
THE AMD gem5 APU SIMULATOR:
MODELING GPUS USING THE MACHINE ISA

TONY GUTIERREZ, SOORAJ PUTHOOR, TUAN TA*, MATT SINCLAIR,
AND BRAD BECKMANN

AMD RESEARCH, *CORNELL
JUNE 2, 2018

2 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OBJECTIVES AND SCOPE

 Objectives

‒ Introduce the Radeon Open Compute Platform (ROCm)

‒ AMD’s Graphics Core Next (GCN) architecture and GCN3 ISA

‒ Describe the gem5-based APU simulator

 Scope

‒ Emphasis on the GPU side of the simulator

‒ APU (CPU+GPU) model, not discrete GPU

‒ Covers GPU arch, GCN3 ISA, and HW-SW interfaces

 Why are we releasing our code?

‒ Encourage AMD-relevant research

‒ Modeling ISA and real system stack is important [1]

‒ Enhance academic collaborations

‒ Enable intern candidates to get experience before arriving

‒ Enable interns to take their experience back to school

 Acknowledgement

‒ AMD Research’s gem5 team

Modeling
APU

systems

[1] Gutierrez et al. Lost in Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language Level. HPCA, 2018.

3 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

QUICK SURVEY

 Who is in our audience?

‒ Graduate students

‒ Faculty members

‒ Working for government research labs

‒ Working for industry

 Have you written an GPU program?

‒ CUDA, OpenCLTM, HIP, HC, C++ AMP, other languages

 Have you used these simulators?

‒ GPGPU-Sim

‒ Multi2Sim

‒ gem5

‒ Our HSAIL-based APU model

 Are you familiar with our HPCA 2018 paper?

‒ Lost in Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language Level

4 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OUTLINE

Topic Presenter Time

Background Tony 8:00 – 8:15

ROCm, GCN3 ISA, and GPU Arch Tony 8:15 – 9:15

HSA Implementation in gem5 Sooraj 9:15 – 10:00

Break 10:00 – 10:30

Ruby and GPU Protocol Tester Tuan 10:30 – 11:15

Demo and Workloads Matt 11:15 – 11:50

Summary and Questions All 11:50 – 12:00

5 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

BACKGROUND

 Overview of gem5

‒ Source tree

 GPU terminology and system overview

 HSA standard and building blocks

‒ Coherent shared virtual memory

‒ User-level queues

‒ Signals

‒ etc.

6 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OVERVIEW OF gem5

 Open-source modular platform for system architecture research

‒ Integration of M5 (Univ. of Michigan) and GEMS (Univ. of Wisconsin)

‒ Actively used in academia and industry

 Discrete-event simulation platform with numerous models

‒ CPU models at various performance/accuracy trade-off points

‒ Multiple ISAs: x86, ARM, Alpha, Power, SPARC, MIPS

‒ Two memory system models: Ruby and “classic” (M5)

‒ Including caches, DRAM controllers, interconnect, coherence protocols, etc.

‒ I/O devices: disk, Ethernet, video, etc.

‒ Full system or app-only (system-call emulation)

 Cycle-level modeling (not “cycle accurate”)

‒ Accurate enough to capture first-order performance effects

‒ Flexible enough to allow prototyping new ideas reasonably quickly

 See http://www.gem5.org

 More information available from Jason Lowe-Power’s tutorial

‒ http://learning.gem5.org/tutorial/

http://www.gem5.org/

7 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

gem5

src

gpu-
compute

mem/

protocol

mem/

ruby

dev/

hsa

configs

APU SIMULATOR CODE ORGANIZATION

 Gem5  top-level directory

‒ src/

‒ gpu-compute/  GPU core model

‒ mem/protocol/ APU memory model

‒ mem/ruby/  APU memory model

‒ dev/hsa/  HSA device models

‒ configs/

‒ example/ apu_se.py sample script

‒ ruby/  APU protocol configs

For more information about the
configuration system, see Jason
Lowe-Power’s tutorial.

For the remainder of this talk, files without a directory
prefix are located in src/gpu-compute/

8 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU TERMINOLOGY

GPU
Core

L1D

GPU
Core

L1D

GPU
Core

L1D

GPU
Core

L1D

GPU I-Cache

L2

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC

TCC

SQC: Sequencer Cache (shared L1 instruction)

AMD terminology

CU: Compute Unit (SM in NVIDIA terminology)

TCP: Texture Cache per Pipe
(private L1 data)

TCC: Texture Cache per Channel
(shared L2)

Scalar Cache Scalar Cache

Not shown (per GPU core):

LDS: Local Data Share (Shared memory in NVIDIA
terminology, sometimes called “scratch pad”)

9 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

EXAMPLE APU SYSTEM
GPU + CPU CORE-PAIR WITH A SHARED DIRECTORY

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC

TCC

CPU0 CPU1

CPU I-Cache

L1D L1D

L2

Directory
Memory

Controller
Memory

GPU

CPU

Scalar Cache

10 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

AMD TERMINOLOGY IN A NUTSHELL

 Heterogeneous Systems Architecture (HSA) programming abstraction

‒ Standard for heterogeneous compute – supported by AMD hardware

‒ Light abstractions of parallel physical hardware

‒ Captures basic HSA and OpenCL constructs, plus much more

 Grid: N-Dimensional (N = 1, 2, or 3) index space

‒ Partitioned into workgroups, wavefronts, and work-items

GPU Core GPU Core

GPU

GPU Architecture

Workgroup Workgroup

Grid

HSA Model

Wavefront (WF)Work-item (WI)
Thread in

CUDA

Grid in CUDA
Thread block

in CUDA

Warp in CUDA

Grid Workgroup

Work-item

11 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

SPECIFICATION BUILDING BLOCKS

HSA Hardware Building Blocks

 Shared Virtual Memory

‒ Single address space

‒ Coherent

‒ Pageable

‒ Fast access from all components

‒ Can share pointers

 Architected User-Level Queues

 Signals

 Platform Atomics

 Defined Memory Model

 Context Switching

HSA Software Building Blocks

 HSA Runtime

‒ Implemented by the ROCm runtime

‒ Create queues

‒ Allocate memory

‒ Device discovery

 Multiple high-level compilers

‒ CLANG/LLVM

‒ C++, HIP, OpenMP, OpenACC, Python

 GCN3 Instruction Set Architecture

‒ Kernel state

‒ ISA encodings

‒ Program flow control

Industry specifications to enable
existing programming languages to
target the GPU

HSA Platform System Arch
Specification

Industry standard, architected requirements for
how devices share memory and communicate
with each other

HSA System Runtime
Specification

Open-
Source

http://hsafoundation.com

http://github.com/HSAFoundation

Open-
Source

GCN3 ISA

Specification

Open-
Source

12 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

APU SIMULATION SUPPORT

HSA Hardware Building Blocks
 Shared virtual memory

‒ Single address space

‒ Coherent

‒ Fast access from all components

‒ Can share pointers

‒ Pageable

 Architected user-level queues

‒ Via architected queuing language (AQL)

 Signals

 Platform atomics

 Defined memory model

‒ Basic acquire and release operations

‒ Merging functional and timing models

 Context switching

HSA Software Building Blocks

 Radeon Open Compute platform (ROCm)

‒ AMD’s implementation of HSA principles

‒ Create queues

‒ Device discovery

‒ AQL support

‒ Allocate memory

 Machine ISA

‒ GCN3

 Heterogeneous Compute Compiler (HCC)

‒ CLANG/LLVM – direct to GCN3 ISA

‒ C++, C++ AMP, HIP, OpenMP, OpenACC, Python

Legend

Included in this release

Work-in-progress / may be released

Longer term work

Acquire and release semantics as implemented by the compiler

13 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OUTLINE

Topic Presenter Time

Background Tony 8:00 – 8:15

ROCm, GCN3 ISA, and GPU Arch Tony 8:15 – 9:15

HSA Implementation in gem5 Sooraj 9:15 – 10:00

Break 10:00 – 10:30

Ruby and GPU Protocol Tester Tuan 10:30 – 11:15

Demo and Workloads Matt 11:15 – 11:50

Summary and Questions All 11:50 – 12:00

14 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

HW-SW INTERFACES

 ROCm – high-level SW stack

 HW-SW interfaces

 Kernel launch flow

 GCN3 ISA overview

15 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

ARE YOU READY TO ROCm?

 HCC

‒ Clang front end and LLVM-based backend

‒ Direct to ISA

‒ Multi-ISA binary (x86 + GCN3)

 ROCm Stack

‒ HCC libraries

‒ Runtime layer – ROCr

‒ Thunk (user space driver) – ROCt

‒ Kernel fusion driver (KFD) – ROCk

 GPU is a HW-SW co-designed machine

‒ Command processor (CP) HW aids in implementing
HSA standard

‒ Rich application binary interface (ABI)

 GPU directly executes GCN3 ISA

‒ Runtime ELF loaders for GCN3 binary

SW STACK AND HIGH-LEVEL SIMULATION FLOW

HCC

MEM

CU

Application
source

x86 ELF

GCN3 ELF +
Code metadata

ROCr

HCC
Libraries

ROCk

Command
Processor

Hardware

GPU

ROCt

See https://rocm.github.io for documentation, source, and more.

User space

OS kernel space

Runtime loader loads
GCN3 ELF into memory

shader.[hh|cc]

compute_unit.[hh|cc]

gpu_command_processor.[hh|cc]

16 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

DETAILED VIEW OF KERNEL LAUNCH

 User space SW talks to GPU via ioctl()

‒ HCC/ROCr/ROCt are off-the-shelf ROCm

‒ ROCk is emulated in gem5

‒ Handles ioctl commands

 CP frontend

‒ Two primary components:

‒ HSA packet processor (HSAPP)

‒ Workgroup dispatcher

 Runtime creates soft HSA queues

‒ HSAPP maps them to hardware queues

‒ HSAPP schedules active queues

 Runtime creates and enqueues AQL packets

‒ Packets include:

‒ Kernel resource requirements

‒ Kernel size

‒ Kernel code object pointer

‒ More…

GPU FRONTEND AND HW-SW INTERFACE

MEM

CU

GPU
HSAPP

Dispatcher

HW Model Components

ROCk

User Space SW

ioctl()gpu_compute_driver.[hh|cc]

dev/hsa/hsa_packet_processor.[hh|cc]

dev/hsa/hw_scheduler.[hh|cc]

CP

Head ptr

Tail ptr

HSA software queue

HW queue

HW Queue
Scheduler

hsa_packet.hh

hsa_queue.hh

kernels work-
groups

17 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

DETAILED VIEW OF KERNEL LAUNCH

 Kernel dispatch is resource limited

‒ WGs are scheduled to CUs

 Dispatcher tracks status of in-flight/pending
kernels

‒ If a WG from a kernel cannot be scheduled, it is
enqueued until resources become available

‒ When all WGs from a task have completed, the
dispatcher frees CU resources and notifies the host

DISPATCHER WORKGROUP ASSIGNMENT

1) Try to dispatch WGs on every cycle

2) Pick oldest AQL pkt in queue; if it has
unexecuted WGs, try to schedule them on a CU

3) Dispatch WG to CU if there are enough WF
slots, enough GPRs, and enough LDS space

Shader

CU CU CU

GPU Dispatcher

AQL Pkt

AQL Pkt

-

HSA Queue Entry
(AQL kernel)

0

1

2

3

ID

AQL Pkt

Grid
wg(0, 0, 0) wg(1, 0, 0)

wg(0, 1, 0) wg(1, 1, 0)

dispatcher.[hh|cc]

hsa_queue_entry.hh

18 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

DETAILED VIEW OF KERNEL LAUNCH

 ABI

‒ Interface between the application binary (ELF) and
other components (e.g., OS, ISA, and HW)

‒ Function call convention, location of special values,
etc.

 ABI state primarily maintained in register file

‒ Some state maintained in the WF context for
simplicity

 CP responsible for initializing register file state

‒ Extracts metadata from code object (GPU ELF binary)

‒ Initializes both scalar and vector registers

‒ Kernel argument base address, vector condition codes
(VCC), etc.

GPU ABI INITIALIZATION

ABI
Binary

System software

HW/ISA

0x7fff…

…
CP

Register File

AMD
Kernel
Code

Kernel arguments
base address

VCC HI

VCC LO

kernel_code.hh

Load 2nd 64b kernel arg into s[2:3]
s_load_dwordx2 s[2:3], s[0:1], 0x08

GCN3 ISA application loading a kernel argument

19 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU MICROARCHITECTURE

 High-level gem5 and Ruby core models

 gem5 ISA/HW separation

‒ Object oriented design

‒ Modular, extensible…

‒ Possible to support multiple-ISAs

 GCN microarchitecture

 gem5’s conceptual pipeline and timing flow

 GCN3 ISA description

 gem5 compute unit implementation

‒ Pipeline breakdown

20 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU CORE MODULES

 GPU core is the compute unit

‒ Resources inside GPU Core

‒ Instruction buffering, Registers, Vector ALUs

‒ Resources outside GPU Core

‒ TCP, TCC, SQC (Ruby based)

 Shader: object containing all GPU core
models

‒ The top-level view of the GPU in gem5

‒ Contains multiple CUs

‒ With other miscellaneous components

GPU CORE MODULES VS. RUBY MODULES

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC

TCC

Hardware building blocks

GPU Core

Modules
APU

Simulator

Ruby

Modules

Simulator software modules

Scalar
Cache

21 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

ISA DESCRIPTION/MICROARCHITECTURE SEPARATION

 GPUStaticInst & GPUDynInst

‒ Architecture-specific code src/arch/

‒ Base instruction classes

‒ ISA decoder

‒ ISA state, etc.

‒ Define API for instruction execution

‒ e.g., execute() – perform instruction execution

‒ Implemented by ISA-specific instruction classes

 GPUExecContext & GPUISA

‒ Define API for accessing ISA state

 Object-oriented design

‒ Base classes define the API

‒ Model uses base class pointers

‒ Configuration system instantiates ISA-specific
objects

GPU core
model
components

ISA specific
instruction
classes and
methods

Wavefront related interfaces

Static instruction objects

HW Blocks

Instruction and ISA specific classes

Dynamic instruction information
and interfaces

Shader
Compute Units

WF Context

GCN3 Static Inst
GCN3 Decoder

Operands
ISA State

ISA Registers

GPUStaticInst
GPUDynInst

GPUExecContex
t

GPU core state

ISA-specific state

GPU Core/ISA API definition

gpu_exec_context.[hh|cc]

gpu_dyn_inst.[hh|cc]

src/arch/gcn3/gpu_static_inst.hh|cc]

src/arch/gcn3/gpu_isa.hh,
src/arch/gcn3/isa.cc

src/arch/gcn3/operand.hh

src/arch/gcn3/registers.[hh|cc]

Relevant source:

22 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU CORE BASED ON GCN ARCHITECTURE

More details available here: GCN Architecture Whitepaper www.amd.com/Documents/GCN_Architecture_whitepaper.pdf

wavefront.[hh|cc]

lds_state.[hh|cc]arch/gcn3/gpu_decoder.hh

arch/gcn3/decoder.cc

In
st

ru
ct

io
n

 F
et

ch

SIMD 2
PC & IB
10 WFs

In
st

ru
ct

io
n

 A
rb

it
ra

ti
o

n

Execute

Compute Unit

VALU VALU VALU VALU

SIMDs

Scalar
Unit

Scalar
RF

Vector
RF

Local Data
Share Mem

Message &
Branch Unit

SIMD 3
PC & IB
10 WFs

SIMD 0
PC & IB
10 WFs

SIMD 1
PC & IB
10 WFs

Export/GDS
Decode

Vector Mem
Decode

Scalar
Decode

LDS Decode

Vector
Decode

TCP

SQC
TCC

Scalar
Cache

src/mem/protocol/GPU_VIPER-TCP.sm

src/mem/protocol/GPU_VIPER-TCC.sm

src/mem/protocol/GPU_VIPER-SQC.sm

scalar_register_file.[hh|cc]

vector_register_file.[hh|cc]

http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf

23 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU CORE TIMING

 Execute-in-execute philosophy

 Pipeline stages

‒ Fetch: fetch for dispatched WFs - fetch_stage.[hh|cc] and fetch_unit.[hh|cc]

‒ Scoreboard: Check which WFs are ready - scoreboard_check_stage.[hh|cc]

‒ Schedule: Select a WF from the ready pool - schedule_stage.[hh|cc]

‒ Execute: Run WF on execution resource - exec_stage.[hh|cc]

‒ Memory pipeline: Execute LDS/global memory operation

‒ local_memory_pipeline.[hh|cc]

‒ global_memory_pipeline.[hh|cc]

‒ scalar_memory_pipeline.[hh|cc]

CONCEPTUAL TIMING STAGES

Fetch Scoreboard Schedule Execute
Memory
pipeline

Fetched WFs Ready WFs Executing WFs

Local memory (LDS)

Global memory (TCP)
Scalar memory

24 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GCN3 GPU ISA

 Vector and scalar instructions

‒ Single instruction stream

‒ Not really “SIMT”

‒ Divergence handled by scalar unit

‒ Can directly modify execution mask

‒ Jump over basic blocks when EXEC = 0

 Instructions broken down by OP type

‒ Op types map to different functional units in
CU

‒ The CU can issue one instruction to each
unit in the same cycle

‒ Export/GDS not supported in gem5

Op Type Functional Unit Usage

SOPP Branch/Message
Unit

Branching, NOPs, Barriers, waitcnts,
messaging

SOPC/SOPK/SOP1/SOP2 Scalar ALU General scalar computation/divergence
handling

SMEM Scalar Memory Scalar memory access, cache maintenance

VOPC/VOP1/VOP2/VOP3 SIMD Unit General SIMD computation

DS LDS Private scratch pad memory

MUBUF Vector Memory Accessing vector memory, cache
maintenance

FLAT LDS/Vector Memory Accessing vector memory, may resolve to
LDS or system memory

VINTRP/MTBUF/MIMG/EXP Varies Primarily used by graphics. Not currently
modeled in gem5; however, the
infrastructure to do so is present.

Full GCN3 spec available at: https://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/

arch/gcn3/insts/op_encodings.[hh|cc]

arch/gcn3/insts/instructions.[hh|cc]

25 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU CORE MODULE INTERNALS

 Compute unit

‒ Four 16-wide SIMD units

‒ SIMD hosts WFs

‒ Private resources to each SIMD
‒ Instruction buffering

‒ Registers

‒ Vector ALUs

‒ Shared resources
‒ Fetch and decode

‒ TCP

‒ LDS

SHARED VS. PRIVATE STRUCTURES

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC

TCC

Scalar
Cache

Instruction Fetch

WF 0-9
Contexts

WF 10-19
Contexts

WF 20-29
Contexts

WF 30-39
Contexts

Instruction Decode/Arbitration

SIMD 0

VGPRs

Vector
ALU

SIMD 1

VGPRs

Vector
ALU

SIMD 2

VGPRs

Vector
ALU

SIMD 3

VGPRs

Vector
ALU

TCP

LDS

Scalar Unit

SGPRs

Integer
ALU

Branch
Unit

4-CU-shared SQC

26 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

FETCH AND WAVEFRONT CONTEXTS

 SQC shared by 4 CUs

‒ Number of SQCs and CUs are configurable

 Fetch

‒ Shared and arbitrated between SIMDs in a CU

‒ Fetch to each SIMD unit

‒ Buffers fetched cache lines per WF

 WF Contexts

‒ 10 WFs per SIMD, 40 per CU

‒ PC and decoded instruction buffers (IB)

‒ Register file and LDS allocation

‒ ¼ of WF executes each cycle

‒ 4 cycles needed to fully execute single SIMD
instruction

PC

IB

WF 0

PC

IB

WF 1

PC

IB

WF 9

Fetch buffer
(per WF)

4-CU-shared SQC

Instruction Fetch

WF 0-9
Contexts

WF 10-19
Contexts

WF 20-29
Contexts

WF 30-39
Contexts

Instruction Decode/Arbitration

SIMD 0

VGPRs

Vector
ALU

SIMD 1

VGPRs

Vector
ALU

SIMD 2

VGPRs

Vector
ALU

SIMD 3

VGPRs

Vector
ALU

TCP

LDS

Scalar Unit

SGPRs

Integer
ALU

Branch
Unit

wavefront.[hh|cc]

PC0 Instruction Data

PC1 Instruction Data

fetch_stage.[hh|cc]

fetch_unit.[hh|cc]

27 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

DECODE AND ISSUE

 Instructions are decoded out of fetch buffers

 Instruction arbitration

‒ Can issue to each functional unit each cycle

‒ Finds ready WFs

‒ Scheduling policy dictates which WFs have priority

‒ Oldest first, easy to add others

Fetch buffer
(per WF)

4-CU-shared SQC

Instruction Fetch

WF 0-9
Contexts

WF 10-19
Contexts

WF 20-29
Contexts

WF 30-39
Contexts

Instruction Decode/Arbitration

SIMD 0

VGPRs

Vector
ALU

SIMD 1

VGPRs

Vector
ALU

SIMD 2

VGPRs

Vector
ALU

SIMD 3

VGPRs

Vector
ALU

TCP

LDS

Scalar Unit

SGPRs

Integer
ALU

Branch
Unit

scoreboard_check_stage.[hh|cc]

LDS SIMD Scalar Global Mem

WF Contexts
Scoreboard

Ready List Per Execution Unit

schedule_stage.[hh|cc]

Read Operands WF Arbitration

LDS SIMD Scalar Global Mem

Execution Units

IB

Instruction data decoded
into instruction buffer

scheduler.[hh|cc]

scheduling_policy.hh

28 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

4-CU-shared SQC

Instruction Fetch

WF 0-9
Contexts

WF 10-19
Contexts

WF 20-29
Contexts

WF 30-39
Contexts

Instruction Decode/Arbitration

SIMD 0

VGPRs

Vector
ALU

SIMD 1

VGPRs

Vector
ALU

SIMD 2

VGPRs

Vector
ALU

SIMD 3

VGPRs

Vector
ALU

TCP

LDS

Scalar Unit

SGPRs

Integer
ALU

Branch
Unit

REGISTER FILES

 General Purpose Registers (GPRs)

‒ Vector registers (VGPR) partitioned per SIMD

‒ Configurable size

‒ Because each SIMD executes independent WF

‒ 32-bit wide

‒ Combine adjacent VGPRs for 64-bit or 128-bit data

‒ Each WF also has scalar general purpose registers
(SGPRs)

 Register Allocation Done by a Simple Pool Manager

‒ Only allows one WG at a time

‒ Statically mapped virtual → physical register index

‒ <base, limit> pair of registers specify GPR allocation

‒ Modular design – more advanced pool managers can be
swapped into the VRF seamlessly

‒ Simple timing model with constant delay

V0

VN-1

VN

VN+1

VN+2

WF0 – <V0, N>

SIMD 0

This is an area where gem5 user contributions would be extremely valuable.

vector_register_file.[hh|cc]

scalar_register_file.[hh|cc]

simple_pool_manager.[hh|cc]

static_register_manager_policy.[hh|cc]

29 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

4-CU-shared SQC

Instruction Fetch

WF 0-9
Contexts

WF 10-19
Contexts

WF 20-29
Contexts

WF 30-39
Contexts

Instruction Decode/Arbitration

SIMD 0

VGPRs

Vector
ALU

SIMD 1

VGPRs

Vector
ALU

SIMD 2

VGPRs

Vector
ALU

SIMD 3

VGPRs

Vector
ALU

TCP

LDS

Scalar Unit

SGPRs

Integer
ALU

Branch
Unit

VECTOR ALUs

 16-lane vector pipeline per SIMD

‒ Each lane has a set of functional units

‒ One work-item per lane

 4 cycles to execute a WF for all 64 work-items

‒ In gem5, 64 work-items are executed in one tick and ticks are
multiplied by 4

 SIMD execution may take longer if work-items in WF have
dissimilar behaviors

‒ Example 1: Branch (or spatial) divergence

‒ Branches executed through predication

‒ When control flow diverges, all lanes take all paths

‒ Example 2: Memory (or temporal) divergence

‒ Longer access latency by one work-item stalls entire WF

Vector ALU in SIMD
Lane 0 Lane 1 Lane 15

compute_unit.[hh|cc]

30 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU CORE TIMING

 Memory instructions generate memory requests

‒ Part of GPU instruction definition (ISA-specific)

 Three phases
‒ execute()

‒ Read operands, calculate address, increment wait count,
and issue to appropriate memory pipe

‒ initiateAcc()

‒ Issue request to memory system

‒ completeAcc()

‒ For loads write back data. Stores do nothing.

 New machine ISAs can use this capability to
support their own memory instructions

 Individual stages contribute to the memory
instruction timing

‒ Additionally memory end timing handled by Ruby and
memory technology parameters

 Memory dependencies are preserved using
waitcnts

HANDLING MEMORY INSTRUCTIONS

GPU dynamic memory instruction

Create
packet

Increment
waitcnt

Global/LDS
operation

Writeback

flat_load_dword v4, v[4:5]

flat_load_dword v16, v[8:9]

flat_load_dword v23, v[14:15]

flat_load_dword v10, v[10:11]

s_waitcnt cnt(3)

v_ashrrev v5, 31, v4

Example GCN3 code:

1. flat_load writes v4

2. Waitcnt specifies wait count value must be ≤ 3

3. Arithmetic shift later reads from v4

4. Waitcnt waits until at least #1 is finished

1

2
3

gpu_dyn_inst.[hh|cc]

arch/gcn3/instructions.[hh|cc]

arch/gcn3/insts/op_encodings[hh|cc]

local_memory_pipeline.[hh|cc]

global_memory_pipeline.[hh|cc]

scalar_memory_pipeline.[hh|cc]

31 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

4-CU-shared SQC

Instruction Fetch

WF 0-9
Contexts

WF 10-19
Contexts

WF 20-29
Contexts

WF 30-39
Contexts

Instruction Decode/Arbitration

SIMD 0

VGPRs

Vector
ALU

SIMD 1

VGPRs

Vector
ALU

SIMD 2

VGPRs

Vector
ALU

SIMD 3

Vector
Registers

Vector
ALU

TCP

LDS

Scalar Unit

Scalar
Registers

Integer
ALU

Branch
Unit

VECTOR MEMORY EXECUTION

 In gem5:

‒ Address calculation: arch/gcn3/insts/op_encodings.hh

‒ Address coalescing

‒ mem/ruby/system/GPUCoalescer.[hh|cc]

‒ mem/ruby/system/VIPERCoalescer.[hh|cc]

‒ mem/protocol/GPU_VIPER-TCP.sm

‒ mem/protocol/GPU_VIPER-TCC.sm

 LDS

‒ User-managed address space

‒ Scratchpad for WFs in workgroup

‒ Used for data sharing and synchronization within workgroup

‒ Cleared when workgroup completes

‒ In gem5, functional model with a pointer per workgroup

Coalescer
Tag

Data

TCP
Address

Write data

Read data

To
 sh

ared
 TC

C

TCC

32 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

CONTROL FLOW DIVERGENCE
SIMT VS. VECTOR EXECUTION MODEL

cmp_lt $c0, $s0, 32

cbr $c0, @BB2

ret

cmp_gt $c0, $s0, 15

cbr $c0, @BB4

st 84, [$d0]

br @BB4

st 90, $[d0]

BB0

BB1

BB3

BB2

BB4

Source code:

if (i > 31) {

*x = 84;

} else if (i < 16) {

*x = 90;

}

Execute taken path
first & flush IB

Fall through to BB3

Instruction buffer
cmp

st
cbr

br

cmp

st
cbr

ret

st

br

ret

ret

Reconvergence point reached, HW
initiated jump to divergent path

Branch over
BB2 & BB3,
flush IB

HSAIL

33 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

CONTROL FLOW DIVERGENCE
SIMT VS. VECTOR EXECUTION MODEL

cmp_lt $c0, $s0, 32

cbr $c0, @BB2

ret

cmp_gt $c0, $s0, 15

cbr $c0, @BB4

st 84, [$d0]

br @BB4

st 90, $[d0]

BB0

BB1

BB3

BB2

BB4

Instruction buffer

cmp_le vcc, 32, v0

s_load s[0:1], s[6:7], 0x0

s_and_saveexec s[2:3], vcc

v_mov v0, 0x00000054

s_cbranch_execz @BB2

s_endpgm

s_waitcnt lgkmcnt(0)

v_mov v[1:2], s[0:1]

flat_store v[1:2], v0

s_waitcnt lgkmcnt(0)

v_mov v[1:2], s[0:1]

flat_store v[1:2], v0

s_andn2 exec, s[2:3], exec

s_cbranch_execz @BB5

v_cmp_ge vcc, 15, v0

s_and_saveexec s[4:5], vcc

v_mov v0, 0x0000005a

s_cbranch_execz @BB5

BB0

BB1

BB2

BB3

BB4

BB5

Branches are optimizations for
case when EXEC = 0 for a BB

cmp
s_load

s_and_saveexec
v_mov

HSAIL

GCN3
Source code:

if (i > 31) {

*x = 84;

} else if (i < 16) {

*x = 90;

}

34 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OUTLINE

Topic Presenter Time

Background Tony 8:00 – 8:15

ROCm, GCN3 ISA, and GPU Arch Tony 8:15 – 9:15

HSA Implementation in gem5 Sooraj 9:15 – 10:00

Break 10:00 – 10:30

Ruby and GPU Protocol Tester Tuan 10:30 – 11:15

Demo and Workloads Matt 11:15 – 11:50

Summary and Questions All 11:50 – 12:00

35 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

WHAT IS HSA?

Processor design that makes it easy to harness the entire computing
power of GPUs for faster and more power-efficient devices, including
personal computers, tablets, smartphones, and servers

Bringing GPU performance to a wide variety of applications

Heterogeneous System Architecture

36 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

KEY FEATURES OF HSA

hComm Heterogeneous Communication via Signals and Atomics

hQ Heterogeneous Queuing

hUMA Heterogeneous Unified Memory Architecture

37 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

TRADITIONAL DISCRETE GPU

 Separate memory

 Separate addr space

‒ No pointer-based
data structures

 Explicit data copying

‒ High latency

‒ Low bandwidth

 Need lots of
compute on GPU to
amortize copy
overhead

 Very limited GPU
memory capacity

GPU Memory

CU

1 …
CU

2

CU

3

CU

M

Coherent System

Memory

CPU

1

CPU

N…
CPU

2

PCIe™

38 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

hUMA UNIFIED MEMORY

 Unified address space

‒ GPU uses user virtual addresses

‒ Fully coherent

 No explicit copying

‒ Data movement on demand

 Pointer-based data structures
shared across CPU & GPU

 Pageable virtual addresses

‒ No GPU capacity constraints

Unified Coherent Memory

CPU

1

CPU

N…
CPU

2

CU

1 …
CU

2

CU

3

CU

M

39 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

 Atomic memory updates fundamental to efficient thread synchronization

‒ Implement primitives like mutexes, semaphores, histograms, …, previously only implemented on CPU

 HSA supports 32bit or 64bit values for atomic ops

‒ CAS, SWAP, add, increment, sub, decrement, …

‒ and other common arithmetic and logic atomic ops

 On PCI-Express system, atomics map to PCI-E atomics

 HSA specifies a well-defined “SC for HRF” memory model

‒ A variant of “Release Consistency” model

‒ Acquire: pull latest data (to me)

‒ Release: push latest data (to others)

‒ Compatible with C++11, Java, OpenCL, and .NET memory models

‒ Details: “HSA Platform System Arch Specification”, http://hsafoundation.com

HSA ATOMICS

40 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

 Hardware-assisted signaling and synchronization primitives

‒ Memory semantics, equivalent to atomics

‒ e.g., 32bit or 64bit value, content updated atomically

‒ Threads can wait on a value

‒ Power-efficient synchronization between CPU and GPU threads

 Allows one-to-one, many-to-one, and one-to-many signaling

‒ Used by system software, runtime, and application SW

‒ Infrastructure to build higher-level synchronization primitives like mutexes, semaphores, etc.

 Updating the value of a signal is equivalent to sending the signal

‒ Release semantics: push data to others

 Waiting on a signal is also permitted

‒ Via a wait instruction or via a runtime API

‒ Acquire semantics: pull data from others

THE HSA SIGNALS INFRASTRUCTURE

41 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

Soft
Queue

Kernel
Mode
Driver

App A
User

Mode
Driver

Direct3D

Soft
Queue

Kernel
Mode
Driver

App C
User

Mode
Driver

Direct3D

Soft
Queue

Kernel
Mode
Driver

App B
User

Mode
Driver

Direct3D

TRADITIONAL COMMAND AND DISPATCH FLOW

Task
Queue

A GPU

C

B
A B

42 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

C

hQ COMMAND AND DISPATCH FLOW

 User-mode application talks directly
to the hardware
‒ HSA Architected Queuing Language (AQL)

defines vendor-independent format

‒ No system call

‒ No kernel driver involvement

 Hardware scheduling

 Greatly reduced dispatch overhead
→ less overhead to amortize
→ profitable to offload smaller tasks

 Device enqueue: GPU kernels can
self-enqueue additional tasks
(dynamic parallelism)

App C

App B

App A

GPU

C C

B

B B

A

A A

A

A

43 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

NATIVE SUPPORT FOR DATA-DEPENDENT TASKS
EXPOSE DIRECTED ACYCLIC GRAPHS (DAG) TO HARDWARE

Barrier Packet

Completion Signal A
Completion Signal B

C BPB

A

HSA Queues

Task A Task B

Task C

44 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

COMMAND QUEUE OVERSUBSCRIPTION CHALLENGE

Sooraj Puthoor, Xulong Tang, Joseph Gross, and Bradford M. Beckmann. 2018. Oversubscribed Command
Queues in GPUs. In Proceedings of the 11th Workshop on General Purpose GPUs (GPGPU-11). February 2018.

HW
Queues

HSA
Queues

(QID = 0)

HSA
Queues

(QID = 1)

Task: A
Task: B

Barrier Pkt
Task: D

HSA
Queues

(QID = 2)

HSA
Queues

(QID = 3)

Barrier Pkt
Task: C

HSA
Queues

(QID = 0)

HSA
Queues

(QID = 1)
Task: B
Task: A Barrier Pkt

Task: D

HSA
Queues

(QID = 2)

HSA
Queues

(QID = 3)

Barrier Pkt
Task: C

A

C

D

B

45 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

QUEUE SCHEDULING HARDWARE

Component Source file

driver
gpu-compute/gpu_compute_driver.cc

dev/hsa/kfd_ioctl.h

hardware
scheduler

dev/hsa/hw_scheduler.[hh|cc]

packet processor dev/hsa/hsa_packet_processor.[hh|cc]

dispatcher gpu-compute/dispatcher.[hh|cc]

HW Model Components

ROCkUser Space SW

ioctl()

CU

GPU
HSAPP

Dispatcher

CP

HW queue

HW Queue
Scheduler

work-
groups

CPU

Memory

HSA software
queue #0

HSA software
queue #1

Active list

*Q0
*Q1
*Q2

Registered
list Q0 Q2

gem5 maintains active list
inside HW queue scheduler

46 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

DOORBELL PAGES AND EVENT PAGES

HW Model Components

ROCkUser Space SW

ioctl()

Head ptr Tail ptr

HSA software queue

CU

GPU
HSAPP

Dispatcher
CP

HW queue

HW Queue
Scheduler work-

groups

CPU

Memory

1.HSADriver::mmap(mmap args)
• runtime calls mmap on the driver
• mmap offset distinguishes event page vs doorbell page mmap

2. driver allocates doorbell page and returns the page address
• For doorbells -> Driver maps the page address to PIO address in the

PT
• For events -> Event pages are user pages

3. runtime allocates doorbell address for each queue based on
queue ID.
• Event pages are currently unused; model relies on functional

interfaces for event notification.

47 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

HSA QUEUE CREATION

1. hsa_queue_create(some args)

2. GPUComputeDriver::ioctl(tc,
AMDKFD_IOC_CREATE_QUEUE)

3. HWScheduler::registerNewQueue(some args)

HW Model Components

ROCkUser Space SW

ioctl()

Head ptr Tail ptr

HSA software queue

CU

GPU
HSAPP

Dispatcher
CP

HW queue

HW Queue
Scheduler work-

groups

CPU

Memory

48 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

QUEUE SWAPPING LOGIC

// Wakeup every wakeupDelay ticks
1. HWScheduler::wakeup()

2. HWScheduler::contextSwitchQ ()

registered list (Packet processor)

active list (Hardware scheduler)

HW Model Components

ROCkUser Space SW

ioctl()

Head ptr Tail ptr

HSA software queue

CU

GPU
HSAPP

Dispatcher
CP

HW queue

HW Queue
Scheduler work-

groups

CPU

Memory

49 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

HSA SIGNAL CREATION

1. hsa_signal_create(some args)

2. GPUComputeDriver::ioctl(tc,
AMDKFD_IOC_CREATE_EVENT)

3. hsa_signal_wait_scacquire(some args)

4. GPUComputeDriver::ioctl(tc,
AMDKFD_IOC_WAIT_EVENTS)

5. GPUComputeDriver::ioctl(tc,
AMDKFD_IOC_SET_EVENT) //or
5. signalWakeupEvent(event ID)

HW Model Components

ROCkUser Space SW

ioctl()

Head ptr Tail ptr

HSA software queue

CU

GPU
HSAPP

Dispatcher
CP

HW queue

HW Queue
Scheduler work-

groups

CPU

Memory

50 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

HSA DOORBELLS

1. hsa_signal_store_screlease(queue-
>doorbell_signal, packet_id);

2. HSAPacketProcessor::write(some args)

3. HWScheduler::write(Addr db_addr, uint32_t
doorbell_reg)

4. HSAPacketProcessor::getCommandsFromHost(some
args)

HW Model Components

ROCkUser Space SW

ioctl()

Head ptr Tail ptr

HSA software queue

CU

GPU
HSAPP

Dispatcher
CP

HW queue

HW Queue
Scheduler work-

groups

CPU

Memory

51 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OUTLINE

Topic Presenter Time

Background Tony 8:00 – 8:15

ROCm, GCN3 ISA, and GPU Arch Tony 8:15 – 9:15

HSA Implementation in gem5 Sooraj 9:15 – 10:00

Break 10:00 – 10:30

Ruby and GPU Protocol Tester Tuan 10:30 – 11:15

Demo and Workloads Matt 11:15 – 11:50

Summary and Questions All 11:50 – 12:00

52 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OUTLINE

Topic Presenter Time

Background Tony 8:00 – 8:15

ROCm, GCN3 ISA, and GPU Arch Tony 8:15 – 9:15

HSA Implementation in gem5 Sooraj 9:15 – 10:00

Break 10:00 – 10:30

Ruby and GPU Protocol Tester Tuan 10:30 – 11:15

Demo and Workloads Matt 11:15 – 11:50

Summary and Questions All 11:50 – 12:00

53 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

RUBY MEMORY CONTRIBUTIONS

 Ruby Background

 CU – Memory Interface

 GPU VIPER Protocol

 GPU SLICC Protocol Tester

OUTLINE

54 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

RUBY MEMORY CONTRIBUTIONS

 Ruby Background

 CU – Memory Interface

 GPU VIPER Protocol

 GPU SLICC Protocol Tester

OUTLINE

55 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

RUBY BACKGROUND

 Flexible Memory System

‒ Rich configuration

‒ Simulate combination of caches, coherence, interconnect, etc.

‒ Rapid prototyping

‒ Domain-Specific Language (SLICC) for coherence protocols

‒ Modular components

 Detailed statistics

‒ Latency distributions for requests

‒ Generated state transitions, network utilization, etc.

 Detailed component simulation

‒ Network (fixed/flexible Garnet pipelines and simple)

‒ Caches (pluggable replacement policies)

‒ Memory (shared memory controllers between Classic and Ruby)

 gem5 Ruby tutorial: http://learning.gem5.org/book/part3/index.html

 Our GCN3 GPU model only works with Ruby memory

http://learning.gem5.org/book/part3/index.html

56 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

RUBY MEMORY CONTRIBUTIONS

 Ruby Background

 CU – Memory Interface

 GPU VIPER Protocol

 GPU SLICC Protocol Tester

OUTLINE

57 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

CU - MEMORY INTERFACE

 Scalar memory operations (to scalar cache)

‒ S_LOAD

‒ S_STORE

 Vector memory operations (to TCP)

‒ BUFFER_LOAD

‒ BUFFER_STORE

‒ BUFFER_ATOMIC

 Cache-wide Synchronization Operation

‒ BUFFER_WBINVL1: write back and invalidate TCP cache

PRIMARY GCN3 MEMORY OPERATIONS

58 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

CU - MEMORY INTERFACE
GPU MEMORY COALESCING – CRITICAL FOR PERFORMANCE

CU

TCP

Coalescer

…

…

CU-side
memory ports

Coalescer-side
memory ports

Byte-aligned request/response
memory packets

coalescePacket
Coalesced Table

Mandatory
Queue

Cache callbacks

(e.g., readCallback,
writeCallback)

Uncoalesced Table
makeRequest

issueRequest

Cache-line-aligned
Ruby requests

completeHitCallback

hitCallback

Only coalesces
packets from the
same wavefront

59 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

RUBY MEMORY CONTRIBUTIONS

 Ruby Background

 CU – Memory Interface

 GPU VIPER Protocol

 GPU SLICC Protocol Tester

OUTLINE

60 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU VIPER PROTOCOL (SEE SRC/MEM/PROTOCOL)
HIGH-LEVEL STRUCTURE

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC (Inst)

TCC

CPU0 CPU1

L1I

L1D L1D

L2

Stateless

Directory

Memory

Controller
Memory

GPU CPU

MOESI_AMD_Base-dir.sm

GPU_VIPER-SQC.sm

GPU_VIPER-TCP.sm

GPU_VIPER-TCC.sm

MOESI_AMD_Base-CorePair.sm

SQC (Scalar)

61 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU VIPER PROTOCOL

 GPU write-through protocol

‒ Store & Atomic requests are written through TCP and TCC

‒ TCP performs Store & Atomic requests immediately (i.e., no stalling for exclusive permissions)

‒ For Store requests, TCP calls back immediately (i.e., writeCallback) without waiting for ACKs from memory

‒ TCP does another callback (i.e., writeCompleteCallback) when receiving store-complete ACKs from memory

‒ Atomic requests are performed in memory

 Data coherence in TCP

‒ TCP-INV requests (e.g., issued by BUFFER_WBINVL1) to invalidate entire TCP

 Data coherence between TCC and CPU caches

‒ Data coherence is maintained through a stateless directory (MOESI_AMD_Base-dir.sm)

 Support single coherent address space between CPU and GPU

WRITE-THROUGH COHERENCE

62 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU VIPER PROTOCOL

 Release consistency

‒ Hower et al. [ASPLOS 2014]

‒ HSA System Arch Specification [hsafoundation.com]

 Acquire fence

‒ Issue TCP-INV to invalidate all stale data in TCP

 Release fence

‒ Wait for all outstanding store requests to commit globally (i.e., writeCompleteCallback)

‒ Wait for all atomic requests (i.e., atomicCallback)

RELEASE CONSISTENCY SUPPORT

http://hsafoundation.com/

63 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

RUBY MEMORY CONTRIBUTIONS

 Ruby Background

 CU – Memory Interface

 GPU VIPER Protocol

 GPU SLICC Protocol Tester

OUTLINE

64 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER

 Developing a functionally correct SLICC protocol is challenging

 We need an effective tool to verify a protocol

MOTIVATION

Desired Features GPU Protocol Tester

GPU protocol compatibility ✓

Precise validation ✓

Wide bug coverage ✓

Fast bug detection ✓

Intuitive bug report ✓

65 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER
HIGH-LEVEL STRUCTURE – RUBY INTERFACE

CPU core

GPU core

Sequencer

Sequencer

Sequencer

Coalescer

CPU Inst$

CPU Data$

GPU Inst$

GPU Data$

The rest of
cache

hierarchy
and memory

Ruby Ports Ruby MemoryCompute Cores

Sequencer GPU Scalar$

66 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER
HIGH-LEVEL STRUCTURE – RUBY INTERFACE

CPU Tester
Thread

GPU Tester
Wavefront

Sequencer

Sequencer

Sequencer

Coalescer

CPU Inst$

CPU Data$

GPU Inst$

GPU Data$

The rest of
cache

hierarchy
and memory

Ruby Ports Ruby MemoryProtocol Tester

Sequencer GPU Scalar$

 Only support data caches for now

67 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER

 Issue sequences (a.k.a., episodes) of memory operations (i.e., Load, Store, Atomic and synchronization
operations) with respect to release consistency

 CPU tester thread

‒ Load, Store, and Atomic operations are scalar

‒ Acquire and release fence are no-ops

 GPU Tester Wavefront

‒ Load, Store, and Atomic are vector operations (i.e., issued by multiple lanes in a wavefront)

‒ Acquire fence issues TCP-INV

‒ Release fence waits for all outstanding Store and Atomic operations to complete (i.e., through
writeCompleteCallback and atomicCallback)

HIGH-LEVEL STRUCTURE – TESTER THREAD

68 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER
HIGH-LEVEL STRUCTURE - EPISODE

 Think of an episode as a critical section

Acquire Lock

Mix of LDs & STs

Release Lock

ATOMIC (A)

ACQUIRE

LD (X)

ST (Y)

…

ATOMIC (A)

RELEASE

CPU Tester Thread

AT (A0)

ACQUIRE

LD (X0)

…

RELEASE

GPU Tester Wavefront (4 lanes)

AT (A1) AT (A2)

LD (X1) LD (X2)

ST (Y0) ST (Y1) ST (Y2)

AT (A0) AT (A1) AT (A2)

AT (A3)

LD (X3)

ST (Y3)

AT (A3)

69 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER
HIGH-LEVEL STRUCTURE - EXECUTION FLOW PER THREAD

Issue a new episode

Execute the episode

Retire the episode

 Randomly generate a series of Load, Store and Atomic
operations to be issued

 For Stores, reserve variables

 Issue requests across all lanes

 Check dependencies between requests

 Receive and validate data responses (for Load and Atomic
operations)

 Track per-address last writers after each store operation

 Release all reserved variables in this episode

 Check for completion

70 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER

 Random GPU Ruby tester does NOT cover data-race scenarios

DATA RACE FREE (DRF) REQUEST STREAM

Atomic_Acq (A)

LD (X) = 0

ST: 1 -> Y

Atomic_Rel (A)

Atomic_Acq (A)

LD (Y) = 0 or 1?

ST: 2 -> X

Atomic_Rel (A)

Atomic_Acq (A)

LD (Y) = 1

ST: 1 -> X

Atomic_Rel (A)

Time

race

no race

A: Atomic variable

X & Y: Non-atomic variables
associated with A

happened-beforeEps 0
Eps 1

(Invalid)

Eps 2

71 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER
HIGH LEVEL STRUCTURE – ADDRESS RANGE

0 1 2 3 4 5 6 7 8 9

0x00 0x04 0x08 0x0c 0x10 0x14 0x18 0x1c 0x20 0x24

Variables

Addresses

Randomly mapped

Atomic Variables Non-Atomic Variables

Line 0 Line 1 Line 2 Line 3 Line 5

 Random mapping → false sharing

 An episode can only reserve and issue load/store operations to non-atomic
variables associated with the atomic variable it acquires

72 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER

 Track per-variable last writers

‒ Who? (i.e., Lane ID, Wavefront ID, CU ID, and Episode ID)

‒ What value was written?

‒ When did the store operation happen?

 For a Load (X), check if return value of X is equal to value written by the last writer to X. The last writer of X

could be

‒ Either the last ST → X in the same episode, or

‒ The last ST → X in a previous episode

 For an Atomic (A)

‒ Use atomic_inc: increment A by 1 atomically

‒ Track how many atomics have been issued so far. Let’s say N.

‒ Return value must be unique in the range [0..N-1] inclusively

VALIDATION

73 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER

 Forward progress check

‒ Report all outstanding requests that have been pending for more than a certain threshold

‒ Report their target addresses, lane IDs, CU IDs, CPU IDs, and episode IDs

 Inconsistency between a Reader and its last Writer (the most common failure!)

 Unexpected atomic return

‒ Report all expected return values

‒ Report address, lane ID, CU ID, and episode ID

 The report really helps trace protocol bugs down quickly and precisely!

FAILURE REPORT

74 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

GPU SLICC PROTOCOL TESTER

 Available configurations

‒ Cache size

‒ Address range - # of atomic and normal variables

‒ System size - # CUs and #CPUs

‒ Episode length - # of LDs and STs per episode

‒ Test length - # of episodes

 Example testing scenarios

‒ Small cache size + Wide address range

‒ Working set is much larger than the cache size

‒ Likely to expose bugs related to cache replacement

‒ Large cache size + Small address range

‒ Likely to expose bugs related to cache coherence (e.g., values are not passed between private caches correctly)

‒ Long episode length

‒ Conflicting accesses in the same episode

TESTING OPTIONS AND SCENARIOS

75 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OUTLINE

Topic Presenter Time

Background Tony 8:00 – 8:15

ROCm, GCN3 ISA, and GPU Arch Tony 8:15 – 9:15

HSA Implementation in gem5 Sooraj 9:15 – 10:00

Break 10:00 – 10:30

Ruby and GPU Protocol Tester Tuan 10:30 – 11:15

Demo and Workloads Matt 11:15 – 11:50

Summary and Questions All 11:50 – 12:00

76 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

 HIP code is easy to write if you have experience with CUDA

 Hipify-perl can automatically convert most CUDA code to HIP code

‒ Works well for simple applications (e.g., no library calls)

‒ Perl regular expression replacement script

‒ Very simple, easy to use (as long as no library calls), fast

 Useful HIP Information:

‒ Basic Intro to HIP

‒ Basic HIP Tutorial

‒ HIP Porting Guide

‒ Platform-Aware Coding

HIPIFY’ING CUDA BENCHMARKS

https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/
https://gpuopen.com/hip-to-be-squared-an-introductory-hip-tutorial/
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md
https://gpuopen.com/platform-aware-coding-inside-hip/

77 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OUTLINE

Topic Presenter Time

Background Tony 8:00 – 8:15

ROCm, GCN3 ISA, and GPU Arch Tony 8:15 – 9:15

HSA Implementation in gem5 Sooraj 9:15 – 10:00

Break 10:00 – 10:30

Ruby and GPU Protocol Tester Tuan 10:30 – 11:15

Demo and Workloads Matt 11:15 – 11:50

Summary and Questions All 11:50 – 12:00

78 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

COMPARISON TO OTHER GPU SIMULATORS

 GPGPU-Sim

‒ Primarily focused on running Nvidia PTX instructions and CUDA applications

‒ Functional CPU model, oriented to model discrete GPU systems

‒ Wisconsin’s gem5-gpu added gem5 timing CPU models

‒ And a Ruby memory system protocol

‒ Differences from gem5-GPU:

‒ GCN3 instructions and ROCm software stack

‒ Unified under the gem5 source control repo

 Multi2Sim

‒ Supports multiple ISAs including AMD Southern Island’s Machine ISA

‒ Limited instruction support

‒ No transient states in coherence protocol

 This is very different than the gem5 NoMALI emulated GPU device

79 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

OBVIOUS IMPROVEMENTS

 Other GPU ISAs

 Complete IOMMU model

 Add graphics functionality

‒ Currently compute only

 Better register model

‒ Simple register pool manager: one WG per CU

 Remove backing store for memory data

‒ When running applications, the data from the caches is not used

80 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

SUMMARY

 Covered a very high-level overview of:
‒ Introduction to the gem5 APU simulator

‒ Mapping between APU system and gem5 APU simulator

 Topics discussed
‒ HSA and GCN Background

‒ Compilation and Simulation Flow

‒ GPU Core modules

‒ GPU memory system model in Ruby

‒ GPU protocol tester

‒ Comparisons/Improvements

 Much more detail in the gem5 source code

 Please contribute back to this community tool!

81 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

THANK YOU

Alex Dutu

Ali Jafri

Arka Basu

Ayse Yilmazer

Binh Pham

Blake Hechtman

Brad Beckmann

Brandon Potter

Can Hankendi

David Hashe

MANY CONTRIBUTORS OVER THE PAST 8+ YEARS

John Alsop

John Kalamatianos

Kishore Punniyamurthy

Kunal Korgaonkar

Lisa Hsu

Manish Arora

Marc Orr

Mario Mendez-Lojo

Mark Leather

Mark Wilkening

Martin Brown

David Roberts

Derek Hower

Dmitri Yudanov

Eric Van Tassell

Gagan Sachdev

James Wang

Jason Power

Joel Hestness

Jieming Yin

Joe Gross

Matt Poremba

Matt Sinclair

Michael LeBeane

Mike Chu

Myrto Papadopoulou

Monir Mozumder

Nagesh Lakshminarayana

Nilay Vaish

Onur Kayiran

Srikant Bharadwaj

Shrikanth Ganapathy

Si Li

Sooraj Puthoor

Steve Reinhardt

Tanmay Gangwani

Tim Rogers

Tony Gutierrez

Tsung Tai Yeh

Tushar Krishna

Xianwei Zhang

Yatin Manerkar

Yasuko Eckert

82 | THE AMD gem5 APU SIMULATOR | JUNE 2, 2018 | ISCA 2018 TUTORIAL |

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new
model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise
this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR
OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies. OpenCL is a trademark of Apple Inc. used by permission of Khronos.

