

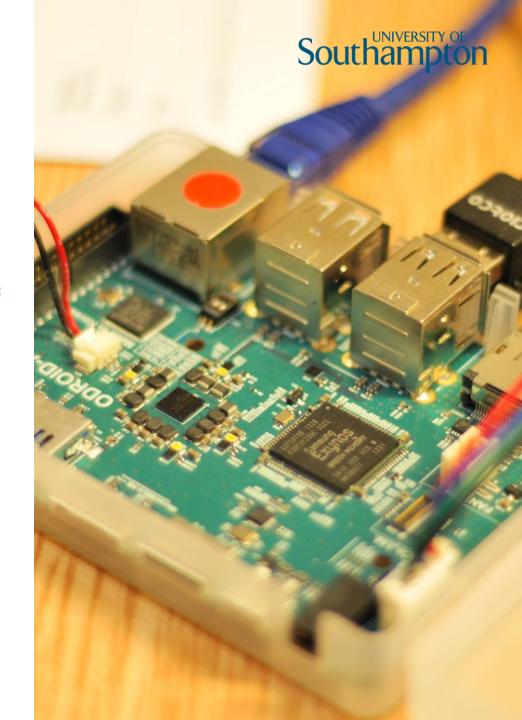
CPU POWER ESTIMATION
USING PMCs, AND ITS
APPLICATION IN gem5

Dr Geoff Merrett

Arm Research Summit, 11 September 2017

OVERVIEW

Introduction and Background


Power Estimation on Hardware

- Our Accurate and Robust Approach
- Open Source Tools

Power Estimation in gem5

- PMCs vs gem5 Statistics
- Power Estimation

Conclusions

WHY POWER ESTIMATION?

Run-Time Management Approaches

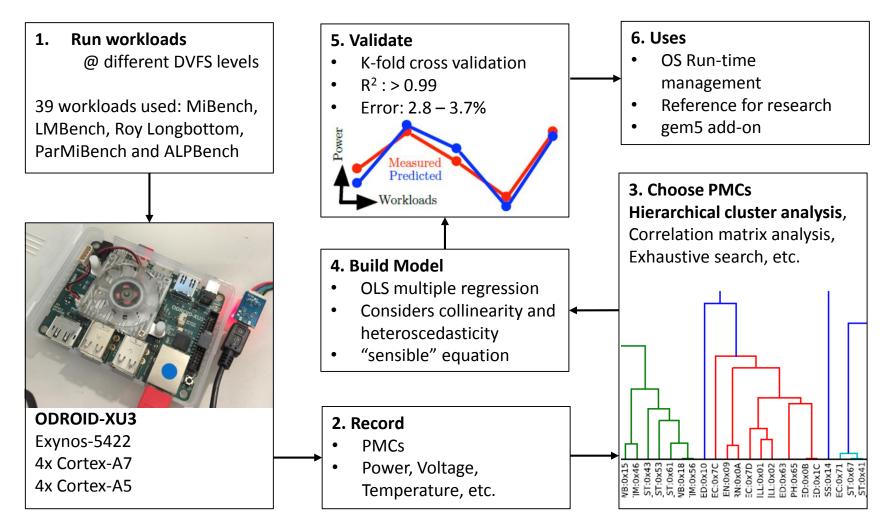
- Make energy-savings by controlling operation.
 - DVFS (dynamic-voltage frequency scaling) and DPM
 - Task scheduling and mapping
- Make decisions based on real-time power 'measurements'

System Research

- Design-space exploration
- Evaluating new power management strategies
- Research power-optimized software (microcode to applications)
- SOC architecture & design balancing for power and performance

POWER MODELLING APPROACHES

"Bottom-Up" Power Models


- Take a design specification (e.g. pipeline stages, ROB size etc.)
- Simulate gates and toggle rates
- Uses statistics from an architectural simulator (e.g. gem5)
- Advantages: flexibility to specify any design; cache size, etc.
- Disadvantages: large errors, slow, limited validation

"Top-Down" Power Models

- Characterise a specific device
- Estimate relationship between measured power and stats, e.g. PMCs
- Advantages: accurate and lightweight
- Disadvantages: specific to the device they were built on

POWMON METHODOLOGY

M. J. Walker et al., "Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 1, pp. 106-119, Jan. 2017.

THE POWMON APPROACH

A power model's stability is more important than its average error


Unstable model

Appears accurate, but performs poorly with diverse workloads

Stable model

- Remains accurate across a diverse range of workloads and scenarios
- Requires careful choice of inputs (PMCs) & observations (workloads)

Eg: choose 3 sensors and appropriate training data to estimate colour:

PERFORMANCE MONITORING COUNTERS

CPU Registers that count architectural and microarchitectural events

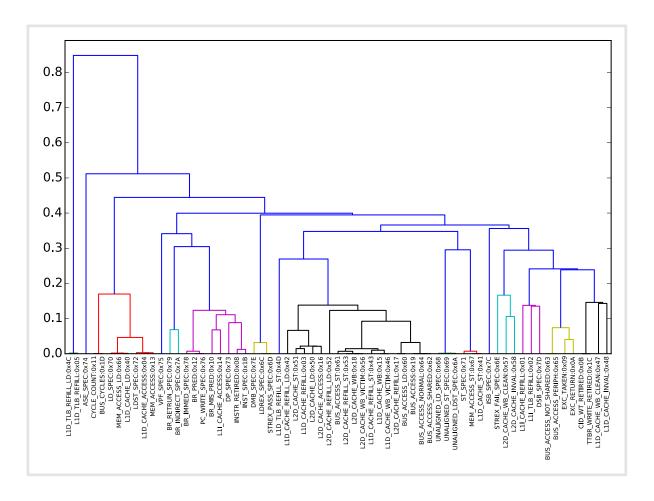
E.g. L2 cache miss, TLB access, integer instruction, etc.

Positives

- Available on several platforms (e.g. ARM, Intel, AMD); low overhead
- Many different available events (>70)...

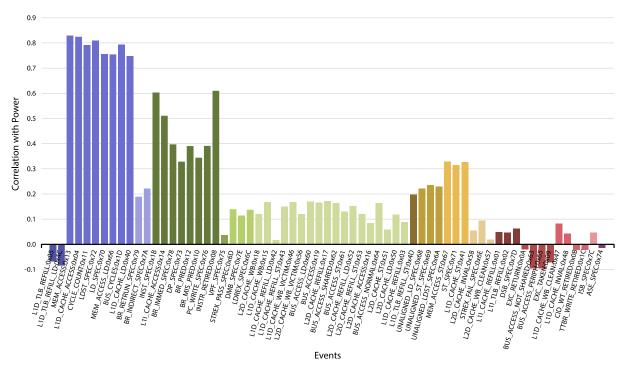
Negatives

• ...but a small number (e.g. 4-6) can be monitored simultaneously

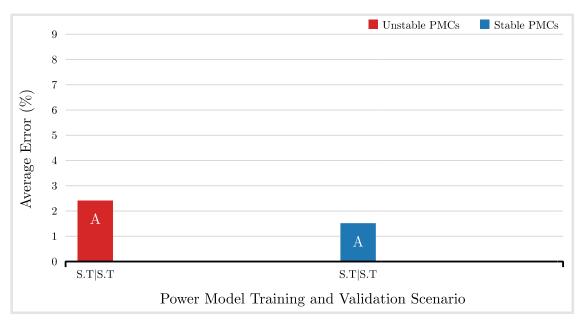

PMCs are often selected using intuition – e.g. try to split PMCs into different sub-architectural units. However can be problematic as:

- They may not gather enough information
- Different PMCs are correlated (can make a model unstable)

HIERARCHICAL CLUSTER ANALYSIS

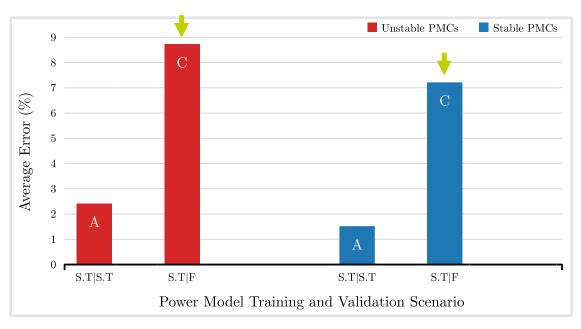

- HCA groups similar events together
- Output is a dendrogram
- This allows PMCs to be grouped into clusters

HIERARCHICAL CLUSTER ANALYSIS


We combine clusters with correlation of each event with CPU power

 Aim: Choose PMCs with a high correlation with power, avoiding ones from the same cluster

1) Training and validating the model with a 'typical' set of workloads

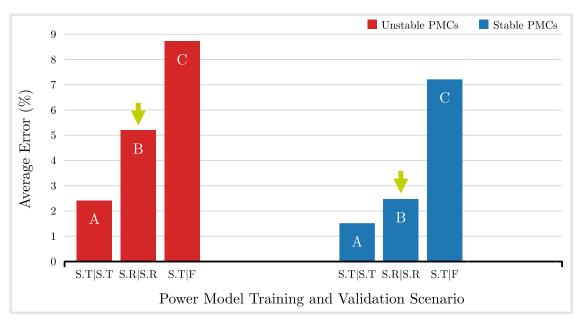

Training: Small set of 20 typical workloads (S.T), e.g. MiBench

Testing: Small set of 20 typical workloads (S.T), e.g. MiBench

Both unstable and stable model seem good (<2.5%)

2) Validating the same model with a 'full' set of workloads

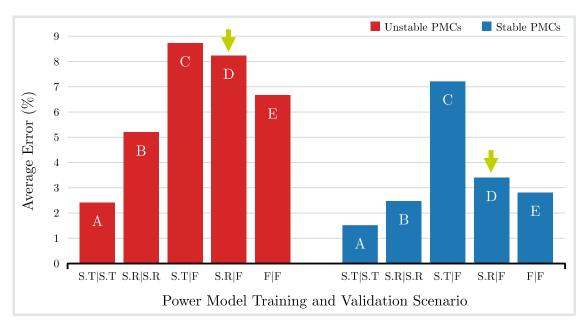
Training: Small set of 20 typical workloads (S.T), e.g. MiBench


Testing: Full set of 60 diverse workloads (F)

Both models perform poorly, errors > 7%; not enough information from training workloads

Testing with a small set of workloads results an optimistic reported error

3) Training and validating the model with a 'random' set of workloads


Training: Small set of 20 random workloads (S.R)

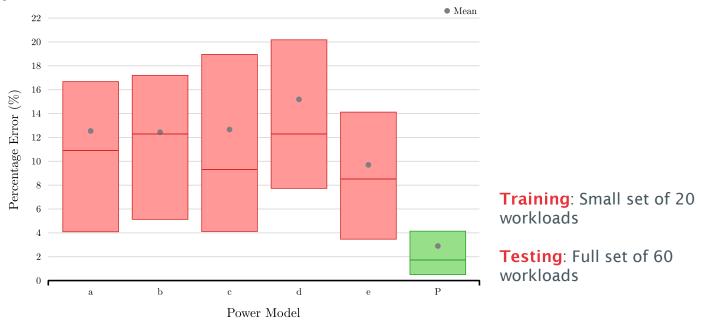
Testing: Small set of 20 random workloads (S.R)

Stable model copes better with workload diversity

4) Validating the same model with a 'full' set of workloads

Training: Small set of 20 random workloads (S.R)

Testing: Full set of 60 diverse workloads (F)


Accuracy of stable model close to full training set (E); unstable model poor

Diverse (random) training allows a stable model to gain prediction power Stable models perform well even with limited training workloads

M. J. Walker et al., "Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 1, pp. 106-119, Jan. 2017.

Our stable approach achieves a low average error and narrow error distribution compared to existing techniques. Models trained with 20 workloads, validated with 60.

[a] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin, "Power-performance modeling on asymmetric multi-cores," CASES '13.
[b] M. Walker et al., "Run-time power estimation for mobile and embedded asymmetric multi-core cpus," HIPEAC Workshop Energy Efficiency with Hetero. Comp. 2015
[c] S. K. Rethinagiri et al., "System-level power estimation tool for embedded processor based platforms," RAPIDO '14. New York, 2014.
[d], [e] R. Rodrigues et al, "A study on the use of performance counters to estimate power in microprocessors," IEEE TCAS II, vol. 60, no. 12, pp. 882–886, Dec 2013.

ROBUST MODEL FORMULATION

Typical regression-based power model formulation

$$P = const + \beta_0 Frequency + \beta_1 Voltage + \beta_2 E_0 + \beta_3 E_1 + \beta_{4E2} + \dots$$

- Relationships between power and other variables is not captured
- Too many independent variables -> instability

Our robust model formulation

$$P_{cluster} = \underbrace{\left(\sum_{n=0}^{N-1} \beta_n E_n V_{DD}^2 f_{clk}\right)}_{\text{dynamic activity}} + \underbrace{f(V_{DD}, f_{clk})}_{\text{static and BG dynamic}}$$

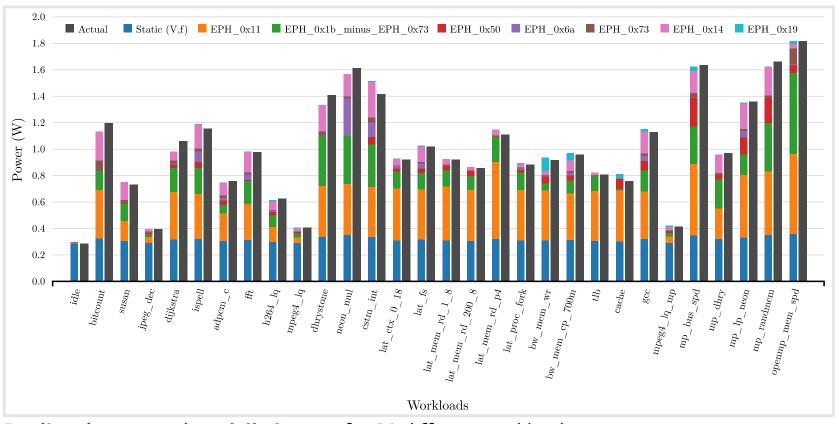
ROBUST MODEL FORMULATION – WHY?

Reduces the experiment time

- frequencies * core utilisations * workloads * average workload time
- By splitting model into static and dynamic, all workloads can be run at a single frequency, with just one (i.e. sleep) at all frequencies

	Avg. Error (%)	Experiment Time (hours)	Workloads
Slow	2.8	40	60
Fast	3.4	0.42 (25 min.)	30

$$P_{cluster} = \underbrace{\left(\sum_{n=0}^{N-1} \beta_n E_n V_{DD}^2 f_{clk}\right)}_{\text{dynamic activity}} + \underbrace{f(V_{DD}, f_{clk})}_{\text{static and BG dynamic}}$$


Allows combination with 'bottom-up' approaches

 Once power has been divided into components, can apply theory to different parts.

Indicates where power may be being consumed

ROBUST MODEL FORMULATION - WHY?

Predicted power and modelled power for 30 different workloads

AVAILABLE TOOLS

Downloads

Results Viewers

Run-Time CPU Power Modelling

Home

Being able to accurately estimate CPU power consumption is a key requirement for both controlling online CPU energy-saving techniques and design-space exploration. Models built and validated using measured data from an actual device are extremely valuable as their accuracy is known and trusted.

This website makes available software tools for implementing our automated model building methodology which produces models that are both accurate and *stable*. We also provide power models for mobile CPUs (quad-core Cortex-A7 and quad-core Cortex-A15) which can be used directly in situations where an accurate reference model is required. Obtaining accurate data from mobile devices can be challenging and more time-consuming that using a simulator or desktop/server devices. For this reason, we make available our experimental platform software tools which allows workloads to be automatically run on a mobile device and Performance Monitoring Counters (PMCs), temperature, CPU utilisation, CPU power and CPU voltage to be collected. Details of our methodology can be found in the following publications:

- M. J. Walker; S. Diestelhorst; A. Hansson; A. K. Das; S. Yang; B. M. Al-Hashimi; G. V. Merrett, "Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.PP, no.99, pp.1-1, doi: 10.1109/TCAD.2016.2562920
- Walker, Matthew J., Diestelhorst, Stephan, Hansson, Andreas, Balsamo, Domenico, Merrett, Geoff V. and Al-Hashimi, Bashir M., "Thermally-aware composite run-time CPU power models,"
 In, International Workshop on Power And Timing Modeling, Optimization and Simulation (PATMOS 2016), Bremen, DE, 21 23 Sep 2016

Part of this work, focussing on thermal compensation and model decomposition, will be presented at PATMOS 2016, on Wednesday 21 September, Bremen, Germany.

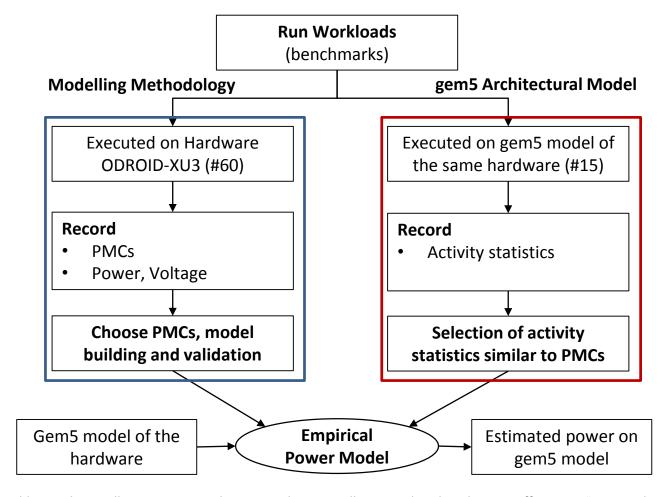
Documentation

This work has previously been presented at:

- ISPASS 2016: Building Online CPU Power Models from Real Data, April 2016
- DATE 2016: RT-POWMODS Run-Time CPU Power Models from Real Data, March 2016
- MICRO-48: Building Online Power Models from Real Data, December 2015

University of Southampton, UK | ARM Research

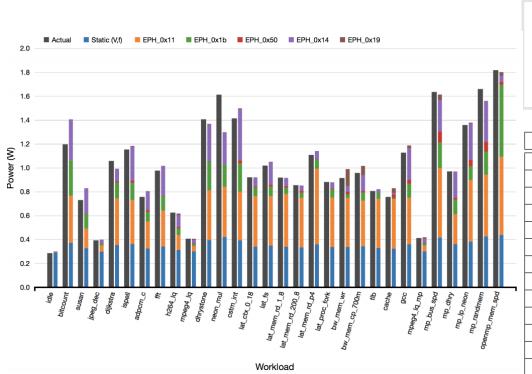
For questions or to provide feedback about the methodology, software tools or this website, email Matthew Walker (mw9g09@ecs.soton.ac.uk)


AVAILABLE TOOLS

Downloads Home Documentation Results Viewers **Downloads** Here we make available our software tools. The license for our software is found in the LICENSE.txt under the top directory. If you use our software in your research, please acknowledge us by citing our paper: M. J. Walker, S. Diestelhorst; A. Hansson; A. K. Das; S. Yang; B. M. Al-Hashimi; G. V. Merrett, "Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.PP, no.99, pp.1-1, doi: 10.1109/TCAD.2016.2562920 1 Experimental Platform 1.1 Disk Image This is the modified Ubuntu-14.04.1 image for the ODROID-XU3 and ODROID-XU4. Last updated: 7th Feb 2016. File size is 4.2 GB. Requires an SD card of 16 GB or larger. ubuntu-14.04.1lts-lubuntu-odroid-xu3-20150212-power-model-20160207-r.img.xz Checksum: ubuntu-14.04.1lts-lubuntu-odroid-xu3-20150212-power-model-20160207-r.img.xz.md5sum 1.2 Experimental Platform Software Below is the link to the latest experimental platform software (for the ODROID-XU3): experimental-platform-software-2016-02-09.tar.gz There is an also an ODROID-XU4 version (records PMCs and utilisation only): experimental-platform-software-xu4-2016-03-04.tar.gz 2 Power Modelling Software Below is the download link for the model building and validation software. power-model-analysis-2016-02-09.tar.gz 3 Data and Results Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs (link to publication): · Results can be viewed in the Results Viewer section · Table of raw data and results (in tab-separated CSV format) Thermally-aware composite run-time CPU power models (link to publication): · Table of raw data and results (in tab-separated CSV format)

University of Southampton, UK | ARM Research

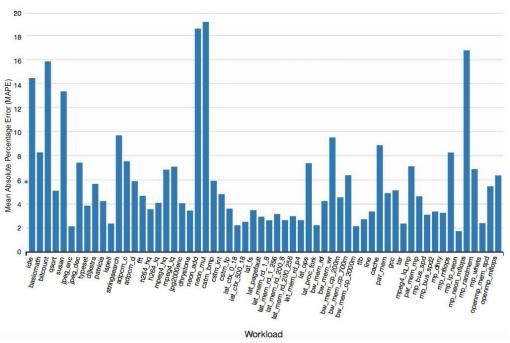
gem5 POWER ESTIMATION



PMC SELECTION

- Our Cortex-A15 power model uses the following seven PMCs:
 - 0x11 CYCLE COUNT: active CPU cycles
 - 0x1B INST SPEC: instructions speculatively executed
 - 0x50 L2D CACHE LD: level 2 data cache accesses read
 - 0x6A UNALIGNED LDST SPEC: unaligned accesses
 - 0x73 DP SPEC: instructions speculatively executed, int data processing
 - 0x14 L1I CACHE ACCESS: level 1 instruction cache accesses
 - 0x19 BUS ACCESS: bus accesses
- Suitable gem5 event counts for PMC events 0x6A and 0x73 were not available; the model was rebuilt without these

MODEL VALIDATION (vs HARDWARE)



$$P_{cluster} = \underbrace{\left(\sum_{n=0}^{N-1} \beta_n E_n V_{DD}^2 f_{clk}\right)}_{\text{dynamic activity}} + \underbrace{f(V_{DD}, f_{clk})}_{\text{static and BG dynamic}}$$

Comp.	Coefficient	Weight	p-value
Dyn. act.	0 x11× V^2f	6.198e-10	p < 0.0001
Dyn. act.	0 x1b× V^2f	2.685e-10	p < 0.0001
Dyn. act.	$0x50 \times V^2 f$	3.528e-9	p < 0.0001
Dyn. act.	$0x14 \times V^2 f$	1.722e-9	p < 0.0001
Dyn. act.	$0x19 \times V^2 f$	3.553e-9	p < 0.0001
Static	Intercept	-1.403e+3	p < 0.0001
Static & B.G. Dynamic	f	2.748e-1	p < 0.0001
Static & B.G. Dynamic	V	4.713e+3	p < 0.0001
Static & B.G. Dynamic	Vf	-1.114e+0	p < 0.0001
Static & B.G. Dynamic	V^2	-5.262e+3	p < 0.0001
Static & B.G. Dynamic	V^2f	1.436e+0	p < 0.0001
Static & B.G. Dynamic	V^3	1.953e+3	p < 0.0001
Static & B.G. Dynamic	V^3f	-5.979e-1	p < 0.0001

MODEL VALIDATION (vs HARDWARE)

MAPE across all DVFS points and core mappings

Model fitting

Parameter	Published	Proposed
No. PMCs	7	5
R^2	0.997	0.983
Adjusted R ²	0.997	0.983
No. Observations	2160	2160
Std Err. of Regression (SER) [W]	0.0517	0.118
F-Statistic	40167.5	11743.9
p-Value for F-Statistic	p < 0.00001	p < 0.00001
Avg. VIF (PMC events only)	2.25	1.74
Avg. VIF (inc. V and f)	3.04	2.90

K-fold cross-validation

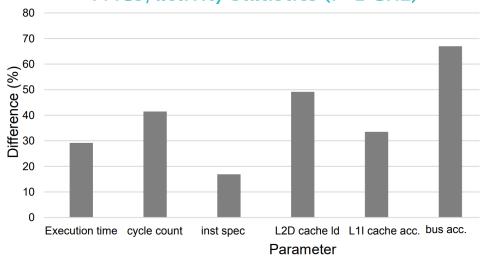
Parameter	Published	Proposed
No. Folds (k)	10	10
Fold Group Size	216	216
Avg. Err. (MAPE) [%]	2.81	5.90
Mean Sq. Err. (MSE) $[W^2]$	0.00275	0.0144
Root Mean Sq. Err. (RMSE) [W]	0.0613	0.127

 Would expect greater error, as only using 4 PMCs, and gem5 doesn't model temperature or voltage variation.

ARCHITECTURAL MODEL

- A detailed OoO model of the 4-core Cortex-A15 in FS mode
- Instruction timing in execution stage configured as per (Endo et al., 2015).
- Integer instructions have latencies of 1 (ALU), 2 (x) and 12 (÷), and default latencies for FP instructions.
- Integer and floating point stages are pipelined.
- Cortex-A15 has two levels of TLB rather than one. To compensate, the ITLB and DTLB are over-dimensioned.

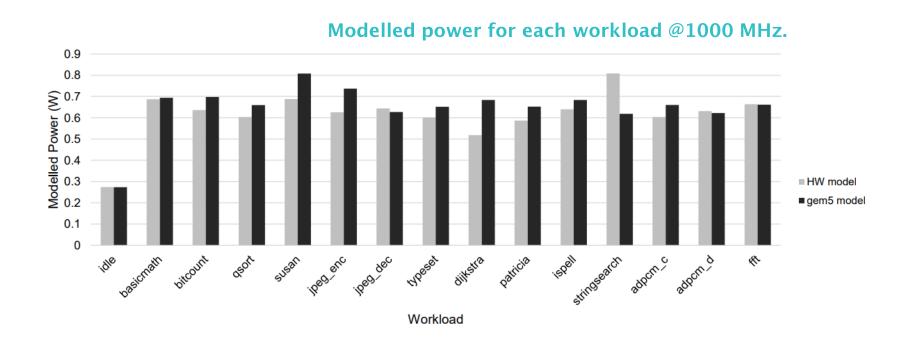
Parameter		Specification	
Core type		Cortex-A15 (out-of-order)	
Number of		4	
CPU clock	(MHz)	200, 600, 1000, & 1600	
DD AM (LDDDDD)	Size	2048 MB	
DRAM (LPDDR3)	Clock	933 MHz	
	Size	2 MB	
	Associativity	16	
L2-Cache	Latency	8 cycles	
	MSHRs	11	
	Write buffers	16	
	Size	32 kB	
L1-I Cache	Associativity	2	
L1-1 Cache	Latency	1 cycle	
	MSHRs	2	
	Size	32 kB	
L1-D Cache	Associativity	2	
LI-D Cache	Latency	1 cycle	
	Write buffers	16	
	MSHRs	6	
ITLB/DT	LB	128 each	
ROB ent	ries	128	
Branch predic	ctor type	Bi-Mode	
BTB ent	4096		
RAS ent	48		
ROB ent	ries	128	
IQ entries		48	
Front-end	width	3	
Back-end	width	8	
LSQ entries		16	


gem5 EVENTS VS HARDWARE PMCs

- 15 MiBench workloads
- 4 frequencies:
 - 200 MHz
 - 600 MHz
 - 1000 MHz
 - 1600 MHz

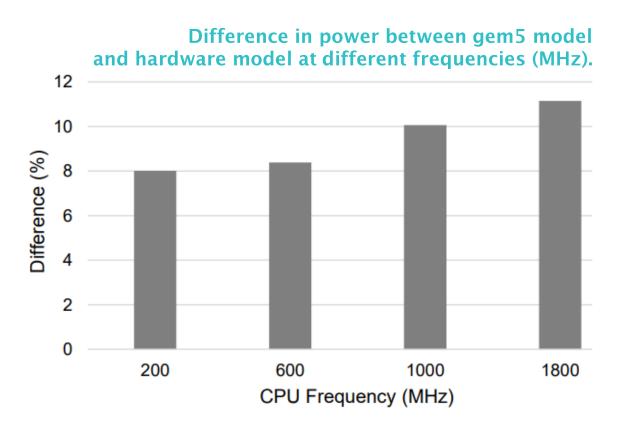
Hardware Event	gem5 Event
0x11 CYCLE COUNT	system.cpu.numCycles
0x1B INST SPEC	system.cpu.iew.iewExecutedInsts
0x50 L2D CACHE LD	system.l2.overall_accesses::total
0x14 L1I CACHE ACCESS	system.cpu.icache.overall_accesses::total
0x19 BUS ACCESS	system.mem_ctrls.num_writes::total + system.mem_ctrls.num_reads::total

Hardware vs gem5: execution time and PMCs/activity statistics (f=1 GHz)


gem5 EVENTS VS HARDWARE PMCs

This difference is likely due to factors including:

- Specification error in the simulator:
 - in the fetch stage contributes to the I-cache miss error.
 - in the TLB models contributes to the reported error in execution time and activity statistics.
- LPDDR3 DRAM in gem5 corresponds to 800 MHz, vs 933 MHz in the hardware.



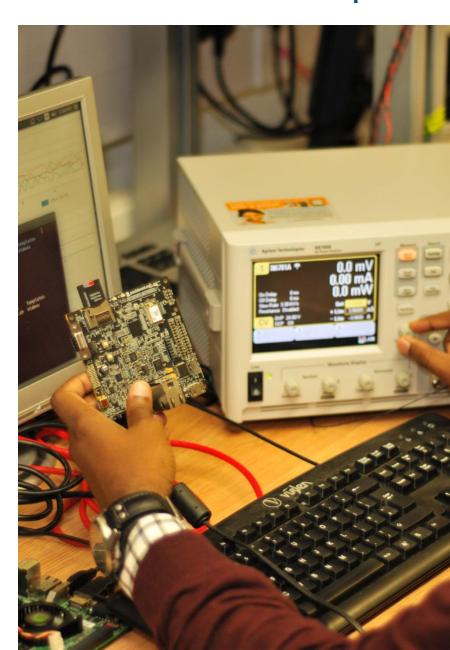
MODEL VALIDATION (gem5 vs HARDWARE)

MODEL VALIDATION (gem5 vs HARDWARE)

Southampton

CONCLUSIONS

Robust and Stable Power Modelling


- Appropriate workload selection
- Stable PMC selection
- Robust model formulation

Applying Models to gem5

- Real hardware vs modelled architecture
- PMCs vs gem5 event stats/exec. time
- 10% error in gem5 vs hardware model

Tools Available!

www.powmon.ecs.soton.ac.uk

Southampton Southampton

ACKNOWLEDGEMENTS

Matthew Walker Uni. Southampton (PhD)

Prof Bashir Al-Hashimi Uni. Southampton

Dr Domenico Balsamo Uni. Southampton (Postdoc)

Stephan Diestelhorst Arm Research

Karunakar Basireddy Uni. Southampton (PhD)

Andreas Hansson (previously) Arm Research

Southampton Southampton

Southampton Southampton

Dr Geoff V Merrett

Associate Professor

Electronics and Computer Science

Tel: +44 (0)23 8059 2775 Email: gvm@ecs.soton.ac.uk | www.geoffmerrett.co.ul Highfield Campus. Southampton. SO17 1BJ UK