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Abstract—Modern GPU frameworks use a two-phase 
compilation approach. Kernels written in a high-level 
language are initially compiled to an implementation-
agnostic intermediate language (IL), then finalized to 
the machine ISA only when the target GPU hardware 
is known. Most GPU microarchitecture simulators 
available to academics execute IL instructions because 
there is substantially less functional state associated 
with the instructions, and in some situations, the ma-
chine ISA’s intellectual property may not be publicly 
disclosed. In this paper, we demonstrate the pitfalls of 
evaluating GPUs using this higher-level abstraction, 
and make the case that several important microarchi-
tecture interactions are only visible when executing 
lower-level instructions. 

Our analysis shows that given identical application 
source code and GPU microarchitecture models, execu-
tion behavior will differ significantly depending on the 
instruction set abstraction. For example, our analysis 
shows the dynamic instruction count of the machine 
ISA is nearly 2× that of the IL on average, but conten-
tion for vector registers is reduced by 3× due to the op-
timized resource utilization. In addition, our analysis 
highlights the deficiencies of using IL to model instruc-
tion fetching, control divergence, and value similarity. 
Finally, we show that simulating IL instructions adds 
33% error as compared to the machine ISA when com-
paring absolute runtimes to real hardware. 

Keywords-ABI; GPU; Intermediate Language; 
Intermediate Representation; ISA; Simulation; 

INTRODUCTION

Research in GPU microarchitecture has increased dra-
matically with the advent of GPGPUs. Heterogeneous pro-
gramming features are now appearing in the most popular 
programming languages, such as C++ [24] and Python 
[18]. To evaluate research ideas for these massively paral-
lel architectures, academic researchers typically rely on cy-
cle-level simulators. Due to the long development time re-
quired to create and maintain these cycle-level simulators, 
much of the academic research community relies on a 

handful of open-source simulators, such as GPGPU-Sim 
[11], gem5 [14], and Multi2Sim [35]. 

Simulating a GPU is especially challenging because of 
the two-phase compilation flow typically used to generate 
GPU kernel binaries. To maintain portability between dif-
ferent generations of GPU hardware, GPU kernels are first 
compiled to an intermediate language (IL). Prior to launch-
ing a kernel, low-level software, such as the GPU driver or 
runtime, finalizes the IL into the machine instruction set 
architecture (ISA) representation that targets the GPU 
hardware architecture. 

Unlike CPU ISAs, GPU ISAs are often proprietary, 
change frequently, and require the simulation model to in-
corporate more functional state, thus academic researchers 
often use IL simulation. In particular, NVIDIA’s Parallel 
Thread Execution (PTX) ISA [33] and the HSA founda-
tion’s Heterogeneous Systems Architecture Intermediate 
Language (HSAIL) Virtual ISA [26] are the most popular 
ILs. However, AMD has recently disclosed several GPU 
ISA specifications, including the Graphics Core Next 
(GCN) 3 ISA [3] explored in this work. AMD has also re-
leased their complete GPU software stack under an open-
source license [8], thus it is now feasible for academic re-
searchers to simulate at the lower machine ISA level. 

From an industrial perspective, this paper makes the 
case that using IL execution is not sufficient when evaluat-
ing many aspects of GPU behavior and implores academics 
to use machine ISA execution, especially when evaluating 
microarchitecture features. The primary goals of ILs (e.g., 
abstracting away hardware details and making kernels 
portable across different HW architectures) directly con-
flict with the goals of cycle-level simulation, such as ac-
counting for hardware resource contention and taking ad-
vantage of unique hardware features. Furthermore, GPUs 
are co-designed hardware-software systems where vendors 
frequently change the machine ISA to simplify the micro-
architecture and push more complexity to software.

While several prior works have investigated modeling 
challenges for the CPU and memory [12] [15] [20] [23], 
this paper is the first to deeply investigate the unique issues 
that occur when modeling GPU execution using the IL. To
facilitate the investigation, this paper also introduces a new 
simulation infrastructure capable of simulating both 
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HSAIL and AMD’s GCN3 machine ISA using the same 
microarchitecture model. 

This paper explores the space of statistics for which IL 
simulation provides a faithful representation of the pro-
gram under test, and those for which it does not. Figure 1
summarizes several key statistics that differ significantly 
between HSAIL and GCN3 and a few that do not. Specifi-
cally, due to significant code expansion, substantial differ-
ences in the application binary interface (ABI), and the lack 
of scalar instructions, HSAIL substantially underestimates 
the dynamic instruction count and the code footprint. De-
spite the significant underestimation in the instruction issue 
rate, HSAIL substantially overestimates GPU cycles, bank 
conflicts, value uniqueness within the vector register file 
(VRF), and instruction buffer (IB) flushes. Meanwhile, the 
lack of a scalar pipeline does not impact HSAIL’s accuracy 
in estimating single instruction, multiple data (SIMD) unit 
utilization and the program’s data footprint. 

In summary, we make the following contributions: 
� We add support for the Radeon Open Compute plat-

form (ROCm) [8] and the state-of-the-art GCN3 ISA 
to gem5’s GPU compute model, and we demonstrate 
how using the actual runtimes and ABIs impact accu-
racy. 

� We perform the first study quantifying the effects of 
simulating GPUs using an IL, and we identify when 
using an IL is acceptable and when it is not. 

� Furthermore, we demonstrate that anticipating the im-
pact IL simulation has on estimating runtime is partic-
ularly hard to predict and application dependent, thus 
architects cannot simply rely on “fudge-factors” to 
make up the difference. 

BACKGROUND

A. GPU Programming 
GPUs are programmed using a data parallel, streaming 

computation model. In this model a kernel is executed by a 
collection of threads (named work-items in the terminol-
ogy applied in this paper). A programmer, compiler, or au-

tomation tool is responsible for identifying the computa-
tion forming the kernel. Modern GPUs support control 
flow operations allowing programmers to construct com-
plex kernels. High-level GPU programming languages de-
fine kernels using the single instruction, multiple thread 
(SIMT) execution model. Threads in a kernel are subdi-
vided into workgroups, which are further subdivided into 
wavefronts (WF). All work-items in a WF are executed in 
lock step on the SIMD units of a compute unit (CU). Ad-
ditionally, AMD’s GCN3 architecture includes a scalar 
unit with corresponding scalar instructions. The use of 
these scalar instructions is transparent to the high-level ap-
plication programmer, as they are generated by the compi-
lation toolchain and are inserted into the WF’s instruction 
stream, which also includes vector instructions. 

B. GPU Hardware 
CUs are the scalable execution units that are instanti-

ated many times within a GPU. GPUs also typically in-
clude a multi-level cache hierarchy to improve memory 
bandwidth and command processors (CP), which are also 
called packet processors using HSA terminology [25], to 
manage work assignment. 

Figure 2 provides a high-level block diagram of the CU 
model in gem5, which is based on AMD’s GCN3 architec-
ture [2]. Each CU contains four SIMD engines, a scalar 
unit, WF slots, local and global memory pipelines, a branch 
unit, a scalar register file (SRF), a VRF, a private L1 data 
cache, memory coalescing logic, and an on-chip local data 
share (LDS). Each CU is connected to shared L1 scalar data 
and instruction caches, which connect to memory through 
a shared L2 cache. 

The GCN3 design splits the CU into four separate sets 
of SIMDs, each of which executes a single instruction 
(same PC) in lockstep on sixteen lanes. Thus, a single 64-
work-item WF instruction is executed across 4 cycles. The 
GCN3 scalar unit’s primary purpose is to handle control 
flow and to aid address generation. 

Figure 1: Average of dissimilar and similar statistics.

Figure 2: Block diagram of the compute unit pipeline.
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ABSTRACTION AND MODELING 
DIFFERENCES

A. ABI Implementation 
A key component of GPU execution that is not captured 

when running HSAIL kernels is the ABI. The ABI defines 
the interface between the application binary (e.g., ELF), 
ISA, and operating system (OS). Examples of things that 
an ABI specifies include: function calling conventions, 
where data segments are placed in memory, the location of 
values such as the program counter (PC), which registers 
are used for argument passing, and the meaning of argu-
ments passed to ISA system call instructions. 

The ABI for GCN3 kernels dictates which registers 
must be initialized, where special values (e.g., condition 
codes) are stored, how code is loaded, and dispatch packet 
format. In contrast, HSAIL lacks an ABI definition, and al-
lows individual vendors to customize the implementation 
to the details of their hardware. The result of using HSAIL 
is that simulators must simplify the functionality of certain 
instructions and features; however, the remaining subsec-
tions point out that without supporting the full ABI, many 
important microarchitecture interactions are missed. 

1) Kernel Launch and State Initialization 
One of the key aspects of GPU simulation that is par-

ticularly affected by the lack of an ABI is the kernel launch 
flow. In preparation for kernel launch, the runtime, kernel 
driver, and the CP perform several tasks, most notably ini-
tialization of register state and kernel arguments. 

The kernel launch flow for HSAIL interprets the real 
kernel launch packet (via the HSA packet processor) and 
extracts relevant information, such as CU resource require-
ments and workgroup sizes. The simulator gathers and 
stores this information in order to service HSAIL instruc-
tions, which amounts to using a simulator-defined ABI. In 
some cases (e.g., when gathering kernel arguments) the 
simulator must maintain state that is not visible to the IL. 

For GCN3 kernels, the real ABI information allows the 
simulator to model ABI initialization similar to real hard-
ware. The CP traverses runtime data structures to extract 
values and initialize the necessary register state. The loader 
also inspects data structures in the ELF binary to obtain 
other pertinent information. Before a kernel launches, the 
required values (kernel argument addresses, workgroup 

sizes, etc.) are loaded into the register files, and the GCN3 
instructions are aware of the semantics of each initialized 
register. 

As an example, it is often beneficial for a work-item to 
know its thread ID (e.g., to index into an array). HSAIL can 
obtain an ID using one instruction, and Table 1 shows that 
this functionality requires several GCN3 instructions. Spe-
cifically, the GCN3 code must first obtain the workgroup 
size from its launch packet, whose address is stored in 
s[4:5]. Then each lane multiplies the size by its workgroup 
ID, which is stored in s8. Finally, each work-item adds its 
base ID within the WF (stored in v0), resulting in the global 
ID. As a result, the single absworkitemid instruction is ex-
panded into five GCN3 instructions as required by the ABI. 

The expansion of HSAIL’s absworkitemid instruction 
is one example that demonstrates how the lack of ABI can 
overly simplify the instruction stream and omit important 
register and memory accesses. The remainder of this sec-
tion highlights several more examples. 

2) Accessing Special Memory Segments 
An expansion similar to that of the absworkitemid in-

struction, occurs for memory instructions as well. Compa-
rable to typical CPU memory addressing, GPU memory
address generation often applies an offset to a known base 
address stored in one or more registers. This is particularly 
the case for accesses to special memory regions, known as 
segments, defined by the HSA standard [25][26]. 

HSA specifically defines the following memory seg-
ments in the virtual address space, which have special 
properties and addressing requirements: global, readonly,
kernarg, group, arg, private, and spill [25][26]. For exam-
ple, the private memory segment has a base address that is 
shared per process, and individual work-items must use 
several offsets and stride sizes to get the base address for 
their portion of the private segment. The information re-
quired to obtain an individual work-item’s private segment 
address is stored in a private segment descriptor, which oc-
cupies four scalar registers. In HSAIL, segment-specific 
memory instructions imply a base address that is usually 
maintained by the simulator, whereas GCN3 only includes 
segment-agnostic memory instructions. Specifically, 
GCN3 kernels store their segment base addresses in regis-
ters that are set by previously executed ISA instructions, or 
by the ABI initialization phase of dispatch. 

Table 2 shows how the ABI impacts kernel argument 
accesses in GCN3 and HSAIL, respectively. Kernel argu-
ment memory is defined as a special HSA segment, similar 
to private memory. For GCN3, the ABI specifies that the 

HHSAIL  GGCN3  
#load kernarg at addr %arg1 
ld_kernarg $v[0:1], [%arg1] 

# mv kernarg base to v[1:2] 
v_mov v1, s6 
v_mov v2, s7 

 
#load kernarg into v3 
flat_load_dword v3, v[1:2] 

 

Table 2: Instructions for kernarg address calculation.

HHSAIL  GGCN3  
# Return Absolute WI ID 
workitemabsid $v0, 0; 

# Read AQL Pkt 
s_load_dword s10, s[4:5], 0x04 
 
# Wait for number of s_loads = 0 
s_waitcnt lgkmcnt(0) 
 
# Extract WG.x Size from Pkt 
s_bfe s4, s10, 0x100000 
 
# Calculate WG.x ID 
s_mul s4, s4, s8 
 
# Calculate Global TID 
v_add v117, vcc, s4, v0 

Table 1: Instructions for obtaining work-item ID.
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kernel argument base address must be placed in two scalar 
registers (s[6:7] in this example) and instructions are gen-
erated to move this address into the appropriate vector reg-
isters needed for the load’s address operand. HSAIL, how-
ever, has no such ABI, therefore it uses abstract labels such 
as %arg1 to indicate the address for the first kernel argu-
ment. Because of this, HSAIL is unaware of the value re-
dundancy of moving a single scalar value into each vector 
lane, and simply loads address operands, perhaps even 
from functional simulator state rather than from main 
memory. 

B. Awareness of Microarchitecture Features 
1) GCN Scalar Pipeline 

HSAIL is a SIMT ISA, with each work-item represent-
ing one thread, whereas GCN3 is a vector ISA (i.e., the ex-
ecution mask is exposed to the ISA) with some instructions 
targeting a scalar pipeline. Fundamentally, HSAIL instruc-
tions define the execution semantics of individual work-
items, whereas GCN vector instructions semantically rep-
resent the execution of an entire WF. Each ISA has a 
unique view of the underlying hardware resources, and di-
rect execution of HSAIL requires much more complex 
hardware. For example, the finalizing compiler (a.k.a. fi-
nalizer) inserts waitcnt instructions into the GCN3 instruc-
tion stream (see §III.B.2)) to greatly simplify dependency 

management. Similarly, the finalizer inserts scalar instruc-
tions within the GCN3 instruction stream, alongside vector 
instructions, in order to manage the WF’s control flow and 
perform other scalar tasks such as address generation. The 
scalar unit is shared among all SIMD units within the com-
pute unit and is also responsible for handling synchroniza-
tion and pipeline scheduling via workgroup barrier instruc-
tions, NOPs, and waitcnts. 

2) Dependency Management 
GCN3’s dependency management is another example 

of hardware-software co-design that enables GPUs to be 
fast, efficient throughput engines. Specifically, AMD 
GPUs do not use a hardware scoreboard, although minimal 
dependency logic (e.g., bypass paths) exists. Instead of 
relying on dedicated hardware, it is the responsibility of the 
finalizer to ensure data dependencies are managed 
correctly. For deterministic latencies, the finalizer will 
insert independent or NOP instructions between dependent 
instructions. For memory instructions, whose timing is not 
deterministic, waitcnt instructions are inserted to ensure 
stale data is not read. Waitcnt instructions will stall 
execution of a WF until the number of memory instructions 
in flight equals the specified value. For instance, if 0 is 
specified, the waitcnt instruction will stall the WF until all 
prior memory instructions complete. Table 1 demonstrates 
how a waitcnt may be used. In this example, the waitcnt 

Figure 3: Managing control flow (HSAIL vs. GCN3). Note numbers indicate order of operations.
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ensures that the s_bfe instruction’s dependence on s10 is 
satisfied before allowing execution to continue beyond the 
waitcnt. 

HSAIL instructions are created by the compiler without 
regard for dependent instructions, therefore the simulator 
must include scoreboard logic to manage dependent in-
structions even though the logic does not exist in the actual 
GPU. Furthermore, the lack of intelligent instruction 
scheduling increases stalls due to RAW or WAR depend-
encies. 

C. Instruction Set Functionality and Encoding 
The previous subsection identified several situations re-

lated to the ABI and microarchitecture features where a few 
HSAIL instructions expanded into many more instructions 
when executing GCN3. This subsection identifies a few 
more situations that specifically relate to instruction set 
functionality and its impact on instruction fetch. Specifi-
cally, this section looks at three examples: 1) control flow 
management, 2) floating point division, and 3) instruction 
fetch. 

1) Managing Control Flow 
A unique issue that arises in GPUs is control flow di-

vergence. Control flow divergence occurs when not all 
work-items in a WF follow the same control flow path. 
When handling divergence, GPUs execute both paths of a 
branch serially, possibly diverging multiple times down 
each path until the paths reconverge. A key difference be-
tween GCN3 and HSAIL is the visibility of the execution 
mask to the ISA. Because GCN3 instructions can view and 
manipulate the execution mask, the compiler is able to lay-
out basic blocks (BB) in the control flow graph (CFG) se-
rially, thereby mitigating the need for a reconvergence 
stack (RS) when control flow is reducible, which is the 
common case. In the case of irreducible control flow, 
GCN3 kernels will manage a software reconvergence 
stack, however this was not encountered in our bench-
marks. 

When executing the SIMT instructions defined in the 
IL, simulators typically manage control flow divergence 
using an RS. If the IL does not identify reconvergence 
points, the simulator will parse the kernel code and identify 
the immediate post-dominator instructions. When execut-
ing the kernel, the simulator’s RS stores the divergent and 
reconvergent PCs for each branch, as well as the execution 
mask. The result is that the simulator can estimate the per-
formance of SIMT code running on vector hardware where 
each WF has only a single PC and both paths of the branch 
are taken in sequence. 

Handling control flow divergence using a RS does not 
represent how AMD hardware handles control flow, and 
thus is fundamentally problematic for simulation when es-
timating front-end performance. Specifically, when reach-
ing a reconvergence point, the simulator will often need to 
initiate a jump to the divergent PC causing the IB to be 
flushed and instructions at the divergent PC to be fetched. 
These extra IB flushes force the WF to stall, but they do 
not occur in real hardware because the ISA is able to simply 
mask off divergent lanes. 

Figure 3 explains in detail how HSAIL uses an RS to 
manage control flow and how it compares to GCN3. The 
example illustrates a simple if-else-if statement (Figure 3a) 
where each work-item writes 84 or 90 to memory depend-
ing on the outcome of the condition statements. The illus-
tration assumes five work-items per WF. 

For HSAIL, the high-level compiler generates the CFG 
using SIMT instructions (Figure 3b) and the single-
threaded nature of the encoding causes IB flushes not en-
countered when executing GCN3. Specifically, when 
reaching the branch at the end of BB0 the simulator first 
executes the taken path and pushes the PC and execution 
mask for the divergent path on the RS ①①. Jumping to BB2 
requires the IB to be flushed because BB2 is not sequen-
tially after BB0, however the subsequent execution of BB3 
does not require an IB flush because the RS detects that the 
branch in BB2 goes to the RPC (the fall through path) ②.
After executing BB3 the top entry from the RS is popped 
and the PC jumps to BB1 ③. This jump also requires an 
IB flush; then after executing BB1, a final IB flush is re-
quired before executing BB4 ④. In the end, the simulator 
encountered three IB flushes in order to approximate the 
execution of the example SIMT instruction stream running 
on vector hardware. 

HSAIL  
# Perform Divide 
div $v[17:18], $v[11:12], $v[1:2] 

GCN3  
# Scale Denominator (D) 
v_div_scale v[3:4], vcc, v[1:2], v[1:2], s[4:5] 
v_mov v[5:6], s[4:5] 
 
# Scale Numerator (N) 
v_div_scale v[5:6], vcc, v[5:6], v[1:2], v[5:6] 
 
# Calculate 1/D 
v_rcp v[7:8], v[3:4] 
 
# Calculate Quotient and Error 
v_fma v[9:10],-v[3:4],v[7:8],1.0 
v_fma v[7:8],v[7:8],v[9:10],v[7:8] 
v_fma v[9:10],-v[3:4],v[7:8], 1.0 
v_fma v[7:8],v[7:8],v[9:10],v[7:8] 
v_mul v[9:10],v[5:6],v[7:8] 
v_fma v[3:4],-v[3:4],v[9:10], v[5:6] 
 
# Calculate Final Q 
v_div_fmas v[3:4],v[3:4],v[7:8],v[9:10] 
 
# Fixup Q 
v_div_fixup v[1:2],v[3:4],v[1:2],s[4:5] 

Table 3: Instructions for 64-bit floating point division.

8 Compute Units, each configured as described below:
GPU Clock 800 MHz, 4 SIMD units
Wavefronts 40 (each 64 lanes)/oldest-job first
D$ per CU 16kB, 64B line, fully associative
VRF/SRF 2,048 vector/800 scalar

Memory Hierarchy

L2$ per 4CUs 512kB, 64B line, 16-way
write-through (write-back for R data)

I$ per 4 CUs 32kB, 64B line, 8-way
DRAM DDR3, 32 Channels, 500 MHz

Table 4.  Simulation configuration.
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For GCN3, the finalizer generates the CFG using both 
scalar and vector instructions and uses branch instructions 
only to bypass completely inactive paths of execution 
(Figure 3c). These optimized bypass paths are highlighted 
with dashed arrows and are not executed in this example 
because collectively the work-items execute all basic 
blocks. By ensuring the CFG is reducible, and through the 
use of predication, the main control flow of the program is 
handled without taking branches or simulator-initiated 
jumps ❶❷❸❹❺. No IB flushes are needed, and the 
front-end of the GPU executes without stalling. The result 
is the GCN3 code executes the divergent control flow far 
more efficiently than HSAIL. 

2) Floating Point Division 
Floating point division is another area for which 

HSAIL greatly simplifies its ISA. In HSAIL floating point 
division is performed by a single div instruction; GCN3 on 
the other hand, relies on several floating point instructions 
to implement the Newton-Raphson method [3], as shown 
in Table 3. While the instruction expansion can be approx-
imated using a comparable latency for the HSAIL instruc-
tion, the effects of increased register pressure can only be 
simulated using the GCN3 code. 

3) Instruction Fetching 
Instruction fetch is particularly challenging to model 

under HSAIL simulation due to fundamental differences in 
encoding between HSAIL and GCN3. Specifically, HSAIL 
kernels are encoded in a BRIG binary, and HSAIL instruc-
tions are not meant to be fetched from memory or directly 
executed and decoded by hardware. Instead, HSAIL in-
structions are encoded as verbose data structures and may 
require several kilobytes of storage. This is because the 
BRIG format was designed to be easily decoded by final-
izer software. When simulating HSAIL, all instructions in 
a BRIG binary are extracted and decoded into simulator 
specific instruction objects as the GPU kernel is loaded. In 

gem5’s HSAIL simulator, each instruction is then repre-
sented as a fixed length 64b unsigned integer value that is 
stored in simulated memory and provides a way for the 
simulator to find the corresponding instruction object. In 
contrast, GCN3 uses variable length instructions: 32b, 64b, 
or 32b with a 32b inline constant. 

METHODOLOGY

Our evaluation methodology relies on gem5’s GPU 
model, which AMD recently released [10], and the open-
source ROCm software stack. Prior to this work gem5 only 
supported OpenCL™ [27], executed HSAIL instructions, 
and emulated the runtime API. A similar approach has been 
used by other GPU simulators [11][35]. In contrast, our 
GCN3 implementation faithfully supports the ROCm stack 
[8] and the GCN3 ISA and only emulates kernel driver 
functionality. Table 4 summarizes the key system parame-
ters we use to compare HSAIL and GCN3. 

Figure 4 shows several of the components that were 
added to the gem5 GPU compute model to execute GCN3 
kernels. It also provides an overview of the compilation 
and code loader flow for the model. All programs are com-
piled using the heterogeneous compute compiler (HCC) 
[4]. HCC is an open-source C++ compiler for heterogene-
ous compute that compiles both CPU and accelerator code 
from single source via its compiler frontend. The simulator 
is able to run HCC applications on an unmodified version 
of the user-level ROCm stack [8]. This includes the HCC 
libraries, the ROC runtime, and the user-space thunk driver 
that interfaces with the kernel-space driver. The kernel 
driver is emulated in gem5’s OS emulation layer. 

HCC compiles and links C++ source, and produces a 
single multi-ISA ELF binary. The resultant ELF binary in-
cludes both the x86 instructions, and an embedded BRIG 
binary that stores the HSAIL instructions. The HCC tool-
chain includes a script called extractkernel that allows a 
user to extract the BRIG image directly from the multi-ISA 
ELF binary. To generate GCN3 code, we use AMD’s of-
fline finalizer tool: amdhsafin [6]. This allows us to gener-
ate and execute separate GPU kernel binaries containing 
HSAIL and GCN3 instructions from the same application. 
Table 5 describes the applications used in this study [1][5]. 

Figure 4: ROCm gem5 compilation flow.

WWorkload  DDescription  

AArray BW  Memory streaming 

BBitonic Sort  Parallel merge sort 

CCoMD  DOE Molecular-dynamics algorithms 

FFFT  Digital signal processing 

HHPGMG  Ranks HPC systems 

LLULESH  Hydrodynamic simulation 

MMD  Generic Molecular-dynamics algorithms 

SSNAP  Discrete ordinates neutral particle transport app. 

SSpMV  Sparse matrix-vector multiplication 

XXSBench  Monte Carlo particle transport simulation 

Table 5: Description of evaluated workloads.
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BEHAVIOR DIFFERENCES

A. Dynamic Instructions 
One of the starkest behavior differences between 

HSAIL and GCN is their dynamic instruction executions.
Figure 5 breaks down the types of HSAIL instructions ex-
ecuted for each workload and compares that to GCN3 (note 
that all HSAIL ALU instructions are vector instructions). 
The Misc classification includes NOP, barrier, and end-of-
program instructions. With FFT being the notable excep-
tion, Figure 5 shows that the GCN3 kernels execute 1.5×-
3× more dynamic instructions than HSAIL. As explained 
in §III.C and validated by comparing the breakdowns of 
instruction types, the significant expansion of GCN3 in-
structions cannot be attributed to a single factor. Instead, 
most workloads see a diverse expansion of instruction 
types. For instance, CoMD has one of the highest percent-
ages of HSAIL branch instructions, which are then ex-
panded to many GCN3 scalar ALU and branch instruc-
tions. Meanwhile, Array BW, LULESH, and HPGMG 
have a high number of HSAIL vector memory operations 
that get expanded into many scalar ALU, scalar memory, 
and waitcnt instructions. 

FFT is the one benchmark whose GCN3 execution has 
the most similar behavior to HSAIL. This is because FFT 
is the most compute-bound application in our suite with 
around 95% of instructions being ALU instructions (for 
GCN3 this includes scalar ALU instructions) and very few 
branches. FFT uses many conditional move instructions, 
which mitigate the need for extra control flow instructions. 
It should also be noted that FFT executes no divide instruc-
tions, thus there is minimal GCN3 code expansion. 

B. VRF Bank Conflicts 
Contention for the VRF can have a significant impact 

on performance. It is crucial that simulation accurately 
reflects the VRF usage of kernels under test. 
Architecturally, HSAIL (which is register-allocated) 

allows up to 2,048 32-bit architectural vector registers per 
WF, whereas GCN3 only allows 256. In addition, GCN3 
allows up to 102 scalar registers per WF. HSAIL has no 
concept of a scalar register file, so all HSAIL register 
values must fit in the VRF.

Figure 6 shows that GCN3 encounters approximately 
one third the port conflicts of HSAIL. The reasons for this 
are two-fold. First, many GCN vector instructions use at 
least one scalar register operand (e.g., a base address) 
whereas all HSAIL operands must come from the VRF. 
Second, the GCN3 finalizer inserts independent 
instructions between instructions that have register 
dependencies. The result is WFs simultaneously executing 
on the same compute unit place less demand on the VRF. 

Figure 7 confirms this behavior by plotting the median 
reuse distance for vector registers. We define the reuse 
distance as the number of dynamic instructions executed 
by a WF between reuse of a vector register. The median 
reuse distance for GCN3 is nearly twice that of HSAIL 
confirming the significant impact the finalizer’s intelligent 
instruction scheduling has on execution behavior. The 
notable exception is FFT. As previously mentioned in 
§V.A, FFT is compute-bound, and executes few 
instructions that require expansion or drastically change 
register file access behavior, therefore HSAIL is able to 
capture its reuse distance well. While FFT’s relative reuse 
distance for GCN3 is essentially the same as it is for 
HSAIL, this workload has one of the highest absolute reuse 
distances of any of our workloads. Under GCN3, FFT takes 
advantage of the scalar unit for its many compare 
operations and conditional moves, HSAIL on the other 
hand may only use vector registers. Thus, while HSAIL 
and GCN3 may reuse individual VRF entries sparsely, 
HSAIL accesses many more vector registers, thereby 

Figure 5: Dynamic instruction count and breakdown normalized to HSAIL.
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increasing the probability of its vector operands being 
mapped to the same bank and encountering conflicts.

C. Instruction Fetching 
IL instructions are inaccurate for representing a ker-

nel’s instruction footprint. As described in §III.C.3) the 
HSAIL instructions are represented in software data struc-
tures, and the encoding was primarily designed for fast in-
terpretation by finalization tools, rather than a hardware 
decoder. To approximate the storage of HSAIL instruc-
tions, the gem5 GPU model encodes each instruction using 
64 bits. Figure 8 compares this approximation to the true 
instruction footprint of the corresponding GCN3 kernels 
and shows that even with the conservative approximation, 
HSAIL kernels underrepresent the true instruction foot-
print by 2.4× on average. This large relative difference is 
due to GCN3’s code expansion, but for most applications 
even the GCN3 footprint fits in the 16KB I-cache. 

The noteworthy exception to this trend is LULESH, 
which is composed of 27 unique kernels and has an abso-
lute instruction footprint of 16KB and 40KB for HSAIL 
and GCN3, respectively. Because the GCN3 instruction 
footprint significantly exceeds the L1 instruction cache 
size of 16KB, LULESH sees a 10× increase in L1 instruc-
tion fetch misses and an effective L1 fetch latency increase 
of 8×. The result is a substantial increase in overall runtime 
(see Figure 12).

Beyond the instruction footprint, the higher-level IL ab-
straction can also cause significant differences in instruc-
tion fetch behavior due to control flow management. 
§III.C.1) described fetch buffer implications of using 
HSAIL’s SIMT ISA, and Figure 9 confirms that GCN3 
kernels require fewer than half as many IB flushes as their 
equivalent HSAIL kernels. Bitonic-Sort and HPGMG do 
not contain branches, and instead use predication to man-
age conditionals. Array BW and XSBench have simple 
control flow constructs (simple loops or direct branches)
that are amenable to HSAIL execution. The result is that, 
in general, GCN3 kernels execute control flow more effi-
ciently than their HSAIL kernel counterparts. 

D. VRF Value Redundancy 
Identifying the redundancy of individual operand val-

ues within the VRF has been the focus of several recent 
works [29][31][39]. We perform a simple case study to
evaluate the uniqueness of operand values across all VRF 
accesses in our applications. Figure 10 shows the unique-
ness of lane values for VRF reads and writes. A higher bar 
means more unique values observed. To calculate operand 
uniqueness, we take the cardinality of the set of all unique 
lane values observed for VRF accesses, divided by the total 
number of lanes accessed (e.g., if we have 32 active lanes 
for a VRF write, and we write only 8 unique values, that is 
a uniqueness of 25%). 

Figure 6: Number of VRF bank conflicts. Figure 7: Median vector register reuse distance.

Figure 9: Instruction buffer flushes.
Figure 8: Instruction Footprint.

615



As can be seen in Figure 10, very different values can 
be observed at the VRF simply because of the ISA, which 
could lead to incorrect conclusions about the effectiveness 
of any value compression or reuse technique. One would 
expect that GCN3 codes would show a universal increase 
in value uniqueness because of GCN3’s ability to execute 
scalar instructions and use scalar operands (even for vector 
instructions), however this is not the case. In the common 
case, value redundancy that is inherent to the kernel re-
mains, and in some cases redundancy is exacerbated by the 
GCN3 ISA. 

Two reasons why GCN3 codes are not able to improve 
value uniqueness are worth highlighting: 1) the scalar unit 
in GCN3 is not generally used for computation, and 2) 
HSAIL’s abstract ABI hides redundant base addresses 
when accessing special segments because the addresses are 
not stored registers. 

Contrasting the results for Array BW and LULESH in 
Figure 10 demonstrates this issue. Array BW is a simple 
kernel that reads from a buffer stored in global memory in 
a very tight loop, and LULESH has many small kernels 
where memory accesses to special segments make up a 
non-trivial portion of kernel instructions. Here Array BW
drastically underestimates the uniqueness of operand val-
ues, showing a uniqueness of about 12%. GCN3, however 
shows a significant improvement in value uniqueness at 
nearly 30%. Because Array BW is dominated by global 
memory loads, both applications experience a low unique-
ness; however, under GCN3 the instructions that update the 
address as it traverses the array are able to utilize scalar 
values and explicit vector registers that hold each lane’s
unique ID. These actions are implicit under HSAIL. 

LULESH demonstrates the opposite effect: HSAIL 
drastically overestimates the value uniqueness (65% for 
HSAIL and 25% for GCN3) because it accesses special 
segments (kernarg and private), whose addresses calcula-
tions are hidden from HSAIL and exposed to GCN3. In ad-
dition, floating point operations in HSAIL limit the visibil-
ity of many intermediate values. For example, the expan-
sion of HSAIL’s floating point divide instruction shown in 

Table 3 may cause increased value redundancy when mul-
tiple lanes generate the same values, such as NaN or 0. 

E. Throughput and Runtime 
Figure 11 compares the instructions per cycle (IPC)

rates of HSAIL and GCN3, and, as expected, GCN3 gen-
erally achieves higher IPC because in many situations mul-
tiple GCN3 instructions are equivalent to a single HSAIL 
instruction. While IPC is not necessarily commensurable 
across ISAs, it is one of the key metrics used to evaluate 
performance, therefore it should track the underlying mi-
croarchitecture resource utilization accurately. HSAIL, 
therefore, will always do a poor job of expressing how well 
a workload utilizes hardware resources. In fact, some re-
sources such as the scalar unit are never used by HSAIL,
thus confirming the pitfall of using HSAIL kernels to eval-
uate resource usage. 

The noticeable exceptions to this trend are FFT and 
LULESH, which encounter slight IPC degradations for 
GCN3. FFT’s degradation is due to the fact that FFT is one 
application that does not experience any GCN3 instruction 
expansion, but some HSAIL ALU instructions are 
translated to GCN3 scalar ALU instructions. Since there 
are four vector ALU (VALU) units per CU, but only one 
scalar ALU unit, this results in increased contention and a 
slight slowdown for the GCN3 kernel. Meanwhile, 
LULESH’s degradation is due its significant number of 
dynamic kernel launches, which number in the thousands. 
HSAIL does not have an ABI that specifies where kernarg 
base addresses are specified (in GCN3 the ABI specifies 
which registers they are stored in) therefore the simulator 
provides them at no cost. GCN3 kernels must retrieve 
kernarg base addresses from registers, and due to 
LULESH’s larger register demand, this leads to extra 
cycles waiting for data in GCN3 when compared to 
HSAIL. 

Overall, it is hard to predict and compensate for the 
runtime implications of using HSAIL, which underscores 
the importance of using GCN3. Simulating HSAIL 
instructions will be optimistic by assuming smaller 
instruction footprints and lower resource utilization. 

Figure 10: Uniqueness of VRF lane values. Figure 11: Normalized IPC.
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However, simulating HSAIL instructions will be 
pessimistic with regards to instruction scheduling, VRF 
port conflicts, and IB flushes. The result is HSAIL’s
runtime can vary significantly from GCN3. In particular, 
Figure 12 shows that HSAIL runtime is 1.6× higher for 
Array BW, but GCN3 is 1.85× higher for LULESH. 

BEHAVIOR SIMILARITIES

A. Data Footprint 
Table 6 shows the data footprint for each benchmark. 

Fundamentally the same computation is performed on the 
same data regardless of which ISA is used, therefore the 
data footprints are precisely the same for most benchmarks. 
The notable exceptions, FFT and LULESH, have footprints 
that are 20% and 4× larger, respectively, when run in 
HSAIL. This is because of the simplified way the simulator 
handles special memory segments, such as the private or 
spill segments, due to HSAIL’s lack of an ABI. FFT and 
LULESH are the only applications in our suite that use spe-
cial memory segments (spill and private, respectively).
Both applications use special segments to spill and fill be-
cause of their large register demands. 

Because HSAIL does not have a known location from 
which it may retrieve its segment base addresses, the sim-
ulator maps and manages the memory for special segments 
independent of the real runtime. Each time a kernel is dy-
namically launched, the emulated HSAIL ABI must allo-
cate new segment mappings. 

GCN3 kernels require support for a robust ABI to run 
correctly, therefore we rely on the real runtime’s support 
for the ABI, and model the hardware with higher fidelity. 
When running GCN3 kernels the simulator does not main-
tain segment mappings, and because the runtime allocates 
segment memory on a per-process basis, as opposed to a 
per-kernel basis, the memory is reused across kernel 
launches within the same process. 

B. SIMD Utilization 
Previously, §V highlighted behavior differences be-

tween HSAIL and GCN3 to justify simulating at the ma-
chine ISA level. There are, however, a few aspects of 

HSAIL’s execution behavior that closely match GCN3,
which can justify using HSAIL instructions in certain situ-
ations. In particular, Table 6 compares the VALU lane uti-
lization for GCN3 and HSAIL and shows HSAIL utilizes 
the SIMD lanes within a few percent of GCN3. This result 
shows that while many aspects of the microarchitecture are 
unknown to HSAIL, the overall computation requirements 
and work-item activity of a kernel are dependent on the 
program behavior, not the ISA description. 

HARDWARE CORRELATION

To determine the overall impact of evaluating GPU ker-
nels using an IL, we compare the simulated execution time 
our applications, for both GCN3 and HSAIL, against 
GCN3-based [38] hardware. In particular, hardware data 
are collected on an AMD Pro A12-8800B APU. We run the 
same codes in both simulation and hardware, and we use 
the same binaries in the case of GCN3 execution. We use 
the Radeon Compute Profiler (RCP) [7] to collect hardware 
performance counters. Table 4 describes the GPU configu-
ration we simulate, which matches the hardware CUs and 
cache system as closely as possible. 

The mean absolute runtime error (averaged across all 
kernels) is shown in Table 7. While not shown in the table 
due to space, GCN3 error remains consistent across ker-
nels, while HSAIL error exhibits high variance. For both 
simulated ISAs, the correlation is quite high. This shows 
that simulating under either ISA may provide performance 
data that correlates well with hardware (i.e., it preserves 
performance trends). The next set of columns in the table 
show the average absolute error with respect to hardware. 
The error for GCN3 simulations is around 45%. In contrast, 
the HSAIL error is significantly higher than GCN3 at 75%.
It should be noted that we did not attempt to eliminate the 
sources of error in the open-source model itself because we 
are only interested in understanding the error that is inher-
ent when evaluating applications under an IL. In addition 
to execution time, we are able to collect several microar-
chitecture-agnostic performance counters using the RCP. 
In particular, the dynamic instruction count, instruction 
mix, and SIMD utilization are all 100% accurate when ex-
ecuting GCN3. 

These results demonstrate that, while some error exists 
in the model itself, HSAIL adds significant additional error 

Figure 12: Normalized Performance.

 DData Footprint  SSIMD  UUtilization  
 HHSAIL  GGCN3  HHSAIL  GGCN3  

Array-BW 386kb 386kB 100% 100% 
Bitonic Sort 512kB 512kB 100% 100% 

CoMD 4MB 4MB 23% 21% 
FFT 232MB 192MB 100% 99% 

HPGMG 9MB 9MB 100% 100% 
LULESH 36MB 8MB 98% 96% 

MD 960kB 960kB 100% 100% 
SNAPC 2MB 2MB 100% 100% 
SPMV 3MB 3MB 67% 72% 

XSBench 58MB 58MB 53% 52% 

Table 6: Similar stats HSAIL vs. GCN3.
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that is difficult to predict. GCN3 simulation error, on the 
other hand, is due only due to modeling error 
[12][15][20][23]. 

RELATED WORK

A. GPU Simulation 
The most closely related work to ours is Barra [17]. The 

authors claim that using PTX may lead to low accuracy, 
and they perform simulations using a reverse-engineered 
ISA (decuda [36]) for the Tesla architecture [30]. However, 
the paper only focuses on functional simulation and micro-
architiecture-agnostic metrics. In comparison, our work 
demonstrates why microarchitects need to consider the dif-
ferences in ISA abstraction. 

GPGPU-Sim [11] is currently the most popular gen-
eral-purpose GPU simulator, and it models NVIDIA GPUs 
while executing PTX and GT200 SASS. The source code 
is linked to a custom runtime, which intercepts all GPGPU 
function calls and emulates the effects. gem5-GPU [34] in-
tegrates GPGPU-Sim with gem5. 

Multi2Sim [35] is a simulation framework for CPU-
GPU heterogeneous computing, and it models AMD's 
GCN1 ISA. Multi2Sim also uses custom runtime imple-
mentations. MacSim [28] is a trace-driven heterogeneous 
architecture simulator that models PTX. The PTX traces 
are generated using GPUOcelot [21] (a dynamic compila-
tion framework that works at a virtual ISA level), and Mac-
Sim converts trace instructions into RISC style micro-ops. 

Attila [19] models the ARB ISA for OpenGL applica-
tions, and does not have a GPU compute model. GpuTejas 
[32] provides a parallel GPU simulation infrastructure; 
however, it does so using PTX. HSAemu [22] is a full-sys-
tem emulator for the HSA platform and uses HSAIL. 

Other than Attila, which models the ARB ISA for 
OpenGL applications and does not have a GPU compute 
model, these simulators model various GPU microarchitec-
tures and memory systems. However, unlike our work, 
most of these simulators model ILs such as PTX or HSAIL. 
Even in situations when simulators use the machine ISA, 
such as Multi2Sim executing the AMD’s GCN1 ISA [9] or 
GPGPU-Sim executing SASS in a specialized encoding 
called “PTXplus,” these simulators still emulate the 
runtime rather than supporting the full user-level software 
stack. 

B. ISA Comparison 
Blem et al. [13] provide a detailed analysis of the ef-

fects the ISA has on a microprocessor’s energy, power, and 
performance. Their work is entirely focused on how the 
ARM and x86 ISAs affect the microarchitecture on which 

they run, and they conclude that, because most micropro-
cessors execute RISC-like micro-ops, the high-level ISA 
does not matter much. Their work does not evaluate the ef-
fects of running (or simulating) different ISAs on the exact 
same microarchitecture. 

CONCLUSION

We have shown that, beyond the microarchitecture, the 
ISA used to encode applications can have significant ef-
fects on any conclusions drawn from simulation results. 
While accuracy may be maintained for a few statistics, ar-
chitects must be aware of the pitfalls we have pointed out 
when drawing conclusions based on IL simulation. There 
are inherent differences between the instructions them-
selves and what knowledge the ISA has about the microar-
chitecture. In addition, the lack of an ABI for ILs abstracts 
away key hardware/software interactions. These differ-
ences can have first-order effects on the observed usage of 
resources and secondary effects on overall application per-
formance, thus motivating the use of a machine ISA. 
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