
Parallel gem5 Simulation of
Many-Core Systems

with Software-Programmable Memories

Bryan Donyanavard*
Tiago Muck*

Majid Shoushtari*
Nikil Dutt

Computer Science

*all listed authors are equal contributors

Target Platform

• A mesh-based many core architecture with distributed
data software programmable memories

2nd gem5 User Workshop, June 20156/11/2015 2

Tile1 Tile2 Tile3

R R R

Tile4 Tile5 Tile6

R R R

Tile7 Tile8 Tile9

R R R

M
M

M
M

CPU Core

NIPMMU

Instruction
Cache

Enabling Simulation of Target Platform

• Software Programmable On-chip Memories
(SPMs)
• SPM Architectural Components
• SPM Programming API
• Communication Infrastructure for Distributed

SPMs

• Simulator Speedup via Parallelization
• Event Queues

2nd gem5 User Workshop, June 20156/11/2015 3

6/11/2015 42nd gem5 User Workshop, June 2015

SPM Integration for Many-cores

Existing Memory Hierarchies

• Classic Memory Model
• No explicit memory

controller
• No NoC

• Ruby
• Protocol dependent

2nd gem5 User Workshop, June 20156/11/2015 5

New Memory Hierarchy

• We add the following
infrastructure to the
Classic Memory Model
• SPM
• Paged Memory

Management Unit (PMMU)
• Address Translation Table

(ATT)
• SPM Governor

CPU 1

SPM 1

CPU 2

SPM 2

BUS

Main Memory

DMA DMA

SPM Governor

PMMU 1 PMMU 2

Mesh
NoC

ATT1 ATT2

2nd gem5 User Workshop, June 20156/11/2015 6

New Memory Hierarchy

• SPM
• Receives and responds to

memory requests from CPU
(in place of old Cache)

• Receives and responds to
memory requests from
PMMU (remote requests over
NoC)

• Forwards all main memory
requests to memory bus
(mimicking a DMA)

CPU 1

SPM 1

CPU 2

SPM 2

BUS

Main Memory

DMA DMA

SPM Governor

PMMU 1 PMMU 2

Mesh
NoC

ATT1 ATT2

2nd gem5 User Workshop, June 20156/11/2015 7

New Memory Hierarchy

• PMMU
• Receives and responds to

memory requests from SPM
(local CPU)

• Receives and responds to
memory requests from NoC
(remote CPU)

• Processes SPM allocate and
free requests from SPM
Governor

CPU 1

SPM 1

CPU 2

SPM 2

BUS

Main Memory

DMA DMA

SPM Governor

PMMU 1 PMMU 2

Mesh
NoC

ATT1 ATT2

2nd gem5 User Workshop, June 20156/11/2015 8

New Memory Hierarchy

• ATT
• Holds translation of thread’s

virtual to SPM physical
address mapping CPU 1

SPM 1

CPU 2

SPM 2

BUS

Main Memory

DMA DMA

SPM Governor

PMMU 1 PMMU 2

Mesh
NoC

ATT1 ATT2

2nd gem5 User Workshop, June 20156/11/2015 9

New Memory Hierarchy

• Governor
• Maintains global state of all

memory mapped to SPMs
• Receives SPM alloc and free

requests from all executing
threads (via pseudo
instructions)

• Determines memory mapping
based on gem5-user-defined
policy and system state

CPU 1

SPM 1

CPU 2

SPM 2

BUS

Main Memory

DMA DMA

SPM Governor

PMMU 1 PMMU 2

Mesh
NoC

ATT1 ATT2

2nd gem5 User Workshop, June 20156/11/2015 10

SPM Programming API

• Programmer’s Interface
• SPM_ARRAY_ALLOC (BASE_PTR, LENGTH, DATA_TYPE)
• SPM_ARRAY_FREE (BASE_PTR, LENGTH, DATA_TYPE)

int *arr1 = (int*) malloc (LENGTH*sizeof(int));
...
SPM_ARRAY_ALLOC (arr1, LENGTH, int);

for (i = 0; i<LENGTH; i++) {
arr1 [i] = i;

}

SPM_ARRAY_FREE (arr1, LENGTH, int);
...
free(arr1);

2nd gem5 User Workshop, June 20156/11/2015 11

Network

NoC Integration

• Integrated simple network mesh NoC from Ruby into Classic Memory
Model

• PMMU handles crossover from QueuedPorts to MessageBuffers, and acts
as network node

P M M U

m_PMMU_responseToNetwork_ptr

m_PMMU_requestToNetwork_ptr

m_PMMU_responseFromSPM_ptr

m_PMMU_requestFromSPM_ptr

m_PMMU_requestToSPM_ptr

m_PMMU_responseToSPM_ptr

SPM

Governor

2nd gem5 User Workshop, June 20156/11/2015 12

Q
ue

ue
d

Po
rts

M
as

te
r

Sl
av

e

M
as

te
r

Sl
av

e

Q
ue

ue
d

Po
rts

SPM Communication Protocol

• Protocol to enable SPM
• SPMRequestMsg : NetworkMessage

• SPMRequestType_READ
• SPMRequestType_WRITE
• SPMRequestType_ALLOC
• SPMRequestType_DEALLOC

• SPMResponseMsg : NetworkMessage
• SPMResponseType_WRITE_ACK
• SPMResponseType_DATA
• SPMResponseType_GOV_ACK

2nd gem5 User Workshop, June 20156/11/2015 13

6/11/2015 142nd gem5 User Workshop, June 2015

Simulator Speedup

Simulation Speedup via Parallelization

• Built on top of current multiple queue
infrastructure

• Main changes
• Assigning a separate queue for each CPU and its

“private” SimObjects (e.g. I$, D$) by setting the
eventq_index param. All other SimObjects
associated to a global queue

• Quantum-based synchronization replaced by
event-based synchronization

6/11/2015 2nd gem5 User Workshop, June 2015 15

Event Synchronization

• Event on the system
queue executes after
all CPU queues

• CPU queues block
until shared event is
handled

• Using synchronization
events to create a
barrier

6/11/2015 2nd gem5 User Workshop, June 2015 16

CPU 0

$I $D

CPU EQ 0

CPU 1

$I $D

CPU EQ 1 System EQ

toL2Bus . . .

Ev
Ev

Ev
Ev
EvEv

Event Synchronization

• Event on the system
queue executes after
all CPU queues

• CPU queues block
until shared event is
handled

• Using synchronization
events to create a
barrier

6/11/2015 2nd gem5 User Workshop, June 2015 16

CPU 0

$I $D

CPU EQ 0

CPU 1

$I $D

CPU EQ 1 System EQ

toL2Bus . . .

Ev
Ev

Ev
Ev
EvEv

Ev Tick x

Event Synchronization

• Event on the system
queue executes after
all CPU queues

• CPU queues block
until shared event is
handled

• Using synchronization
events to create a
barrier

6/11/2015 2nd gem5 User Workshop, June 2015 16

CPU 0

$I $D

CPU EQ 0

CPU 1

$I $D

CPU EQ 1 System EQ

toL2Bus

BrEv

. . .

Ev
Ev

Ev
Ev
EvEv

Ev
BrEv

BrEvBrEv BrEv

BrEv

Tick x-1

Tick x

Tick x+1

Synchronization Layers for Race Conditions

6/11/2015 2nd gem5 User Workshop, June 2015 17

Preliminary Simulator Speedups
• Microbenchmarks on

cache-based classic
memory
• Cache-light:

computationally intensive
• small number of accesses to

L2/system queue
• Cache-heavy: memory

intensive with very high $
miss rate

• Many accesses to L2/system
queue

• CPU queues block all the
time

6/11/2015 2nd gem5 User Workshop, June 2015 18

Preliminary Simulator Speedups
• Microbenchmarks on

cache-based classic
memory
• Cache-light:

computationally intensive
• small number of accesses to

L2/system queue
• Cache-heavy: memory

intensive with very high $
miss rate

• Many accesses to L2/system
queue

• CPU queues block all the
time

6/11/2015 2nd gem5 User Workshop, June 2015 18

Advantageous for
coherent-less

memory (e.g. SPM)

Feedback

• Comments and suggestions?
• Interested in participating?
• Contact us:

• Bryan – bdonyana@uci.edu
• Majid – anamakis@uci.edu
• Tiago – tmuck@uci.edu

2nd gem5 User Workshop, June 20156/11/2015 19

mailto:bdonyana@uci.edu
mailto:anamakis@uci.edu
mailto:tmuck@uci.edu

Thank you

Q&A

duttgroup.ics.uci.edu
2nd gem5 User Workshop, June 20156/11/2015 20

	Parallel gem5 Simulation of �Many-Core Systems �with Software-Programmable Memories
	Target Platform
	Enabling Simulation of Target Platform
	SPM Integration for Many-cores
	Existing Memory Hierarchies
	New Memory Hierarchy
	New Memory Hierarchy
	New Memory Hierarchy
	New Memory Hierarchy
	New Memory Hierarchy
	SPM Programming API
	NoC Integration
	SPM Communication Protocol
	Simulator Speedup
	Simulation Speedup via Parallelization
	Event Synchronization
	Event Synchronization
	Event Synchronization
	Synchronization Layers for Race Conditions
	Preliminary Simulator Speedups
	Preliminary Simulator Speedups
	Feedback
	Thank you

