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Target Platform

• A mesh-based many core architecture with distributed 
data software programmable memories
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Enabling Simulation of Target Platform

• Software Programmable On-chip Memories 
(SPMs)
• SPM Architectural Components
• SPM Programming API
• Communication Infrastructure for Distributed 

SPMs

• Simulator Speedup via Parallelization
• Event Queues
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SPM Integration for Many-cores



Existing Memory Hierarchies

• Classic Memory Model
• No explicit memory 

controller
• No NoC

• Ruby
• Protocol dependent
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New Memory Hierarchy

• We add the following 
infrastructure to the 
Classic Memory Model
• SPM
• Paged Memory 

Management Unit (PMMU)
• Address Translation Table 

(ATT)
• SPM Governor
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New Memory Hierarchy

• SPM
• Receives and responds to 

memory requests from CPU 
(in place of old Cache)

• Receives and responds to 
memory requests from 
PMMU (remote requests over 
NoC)

• Forwards all main memory 
requests to memory bus 
(mimicking a DMA)
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New Memory Hierarchy

• PMMU
• Receives and responds to 

memory requests from SPM 
(local CPU)

• Receives and responds to 
memory requests from NoC
(remote CPU) 

• Processes SPM allocate and 
free requests from SPM 
Governor
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New Memory Hierarchy

• ATT
• Holds translation of thread’s 

virtual to SPM physical 
address mapping CPU 1
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New Memory Hierarchy

• Governor
• Maintains global state of all 

memory mapped to SPMs
• Receives SPM alloc and free 

requests from all executing 
threads (via pseudo 
instructions)

• Determines memory mapping 
based on gem5-user-defined 
policy and system state
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SPM Programming API

• Programmer’s Interface
• SPM_ARRAY_ALLOC (BASE_PTR, LENGTH, DATA_TYPE)
• SPM_ARRAY_FREE (BASE_PTR, LENGTH, DATA_TYPE)

int *arr1 = (int*) malloc (LENGTH*sizeof(int));
...
SPM_ARRAY_ALLOC (arr1, LENGTH, int);

for (i = 0; i<LENGTH; i++) {
arr1 [i] = i;

}

SPM_ARRAY_FREE (arr1, LENGTH, int);
...
free(arr1);
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Network

NoC Integration

• Integrated simple network mesh NoC from Ruby into Classic Memory 
Model

• PMMU handles crossover from QueuedPorts to MessageBuffers, and acts 
as network node
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SPM

Governor
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SPM Communication Protocol

• Protocol to enable SPM
• SPMRequestMsg : NetworkMessage

• SPMRequestType_READ
• SPMRequestType_WRITE
• SPMRequestType_ALLOC
• SPMRequestType_DEALLOC

• SPMResponseMsg : NetworkMessage
• SPMResponseType_WRITE_ACK
• SPMResponseType_DATA
• SPMResponseType_GOV_ACK
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Simulator Speedup



Simulation Speedup via Parallelization

• Built on top of current multiple queue 
infrastructure

• Main changes
• Assigning a separate queue for each CPU and its 

“private” SimObjects (e.g. I$, D$) by setting the 
eventq_index param. All other SimObjects
associated to a global queue

• Quantum-based synchronization replaced by 
event-based synchronization
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Event Synchronization

• Event on the system 
queue executes after 
all CPU queues   

• CPU queues block 
until shared event is 
handled

• Using synchronization 
events to create a 
barrier 
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Event Synchronization

• Event on the system 
queue executes after 
all CPU queues   

• CPU queues block 
until shared event is 
handled

• Using synchronization 
events to create a 
barrier 
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Synchronization Layers for Race Conditions
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Preliminary Simulator Speedups
• Microbenchmarks on 

cache-based classic 
memory
• Cache-light: 

computationally intensive
• small number of accesses to 

L2/system queue
• Cache-heavy: memory 

intensive with very high $ 
miss rate

• Many accesses to L2/system 
queue

• CPU queues block all the 
time
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Advantageous for 
coherent-less 

memory (e.g. SPM)



Feedback

• Comments and suggestions? 
• Interested in participating? 
• Contact us: 

• Bryan – bdonyana@uci.edu
• Majid – anamakis@uci.edu
• Tiago – tmuck@uci.edu
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Thank you

Q&A

duttgroup.ics.uci.edu
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