
University of Michigan

Electrical Engineering and Computer Science

Performance Prediction Models

Shruti Padmanabha, Andrew Lukefahr,

Reetuparna Das, Scott Mahlke
{shrupad,lukefahr,reetudas,mahlke}@umich.edu

Gem5 workshop

Micro 2012

December 2, 2012

University of Michigan

Electrical Engineering and Computer Science
2

• Pushing heterogeneity into a core

• A tightly coupled o3 backend (big)
and an inorder one (little)
– Big – 3 wide OoO with large ROB,

LSQ

– Little – 2 wide inorder, modeled as a
OoO core with simplified pipeline,
small ROB, no LSQ

• Switch at fine granularity or
quantum (controller)

Composite Cores

Big

Little Little

For more details, please attend the paper presentation on Tuesday

Feedback

controller

University of Michigan

Electrical Engineering and Computer Science
3

Operation of Composite Cores

Little

backend Big

backend

quantum

Active!

Controller – “Run on big”

Compare

CPI = 2.33

CPI = ???

Controller

CPI = ???

Instructions

University of Michigan

Electrical Engineering and Computer Science
4

Objectives

• Run a quantum on one backend microarchitecture
and project its performance on a different one
dynamically

• Challenge: Only one is active at any given time

• Solution: Use a linear model to calculate the
inactive core’s performance using the slice’s
computational traits

𝑦 = 𝑎0 + 𝑎𝑖𝑥𝑖

University of Michigan

Electrical Engineering and Computer Science
5

Performance defining factors

Computational trait Big Little Rel Performance

Diff

Independent chain of

instructions (high ILP)

Exploits larger

superscalar width

Lower throughput High

Dependent chain of instructions

(low ILP)

Issues in order Issues in order Low

Branch mispredictions Large drain time Smaller drain time High

Independent chain of L2 misses

(high MLP)

Can have multiple

outstanding loads

Stalls High

Dependent chain on L2 misses

(low MLP)

Stalls Stalls Low

Icache misses Stalls Stalls Low

University of Michigan

Electrical Engineering and Computer Science
6

• Per program slice, dynamically track

– Active CPI

– # of Branch misses

– # of L1 misses

– # of L2 misses

– # of Icache misses

– ILP

– MLP

• Append dynamic instruction class with fields that
identify above parameters

Performance defining Counters

University of Michigan

Electrical Engineering and Computer Science
7

• Branch misses:

– Set flag on branch mispredict discovery in iew_impl.hh

• Cache level:

– Append the Packet class with a field to track the level of
cache that satisfied request

– Set field on packet return, in lsq_unit_impl.hh

Performance counters example

lsq_unit_impl.hh

handleResponse(pkt):

 target->pkt->cachelevel =

pkt->cachelevel

cache_impl.hh

access(pkt):

 L2?

 Yes

 pkt->cachelevel = L2

cache_impl.hh

access(pkt):

 L1?

 No, forward pkt

cache_impl.hh

writeback(inst, pkt):

 inst->cachelevel =

 pkt->cachelevel

University of Michigan

Electrical Engineering and Computer Science
8

Measuring ILP & MLP – Big backend

While on big,

• Measure of ILP in a quantum:

– Track # of instructions that are

stalled due to dependencies in

inst_queue_impl.hh

• Measure of MLP in a quantum:

– Track # of MSHR entries in use

at each L1 cache miss

quantum

Big

Insts that

could issue

in parallel

(max ILP)

Mem refs that

could issue

in parallel

(max MLP)

University of Michigan

Electrical Engineering and Computer Science
9

Measuring ILP & MLP – Little

backend

While on little,

• More complicated, since the smaller
core doesn't have the ability to exploit
these characteristics

• Track data dependence chains for the
window of instructions that big cares
about (it’s ROB length)

quantum

Little

Insts that

could issue

in parallel

(max ILP ???)

Mem refs that

could issue

in parallel

(max MLP ???)

University of Michigan

Electrical Engineering and Computer Science
10

Little’s Dependence Tracker Table*

• Bit matrix – (#ROB entries in big) * (#registers)

• Implemented using multidimensional vectors in

commit_impl.hh

• Passes information about the serialization inherent

in code section to the instruction class

*L. Chen, S. Dropsho, and D. Albonesi, “Dynamic data dependence tracking and its application to branch

prediction”

University of Michigan

Electrical Engineering and Computer Science
11

Dependence Tracker Table

r1 r2 r3 r4 r5 r6 r7 r8 Instruction

Inst 1

Inst 2

Inst 3

Inst 4

Inst 5

Inst 6

Reg #
Inst #

r2 <- r3 + r5 X

r4 <- r1 – r2

r1 <- Load(r7)

r3 <- Load(r2)

r2 <- r3 or r6

X

X

X

r8 <- Load(r2)

X

X

X

X

X

X

Miss

Miss

Miss

X

Miss

Dependent

load!

Big ROB Head

Big ROB Tail

Big ROB Tail

Big ROB Tail

Big ROB Tail

Big ROB Tail

Big ROB Tail

X

Miss

8 register system, with 7 big ROB entries

2 independent, overlappable and 1 dependent L2 miss seen in this

window.

Max available MLP = 2

Independent

load!

University of Michigan

Electrical Engineering and Computer Science
12

Prediction Accuracy

0%

5%

10%

15%

20%

25%

30%

35%

40%

-100% -50% 0% 50% 100%

P
er

ce
n

t
o

f
Q

u
an

tu
m

s

Percent Deviation From Actual

Regression

big->little

0%

5%

10%

15%

20%

25%

30%

-100% -50% 0% 50% 100%
P

er
ce

n
t

o
f

Q
u

an
tu

m
s

Percent Deviation From Actual

Regression

little->big

95% of the quantums predicted with

<10% error

82% of the quantums predicted with

<10% error

University of Michigan

Electrical Engineering and Computer Science
13

Conclusion

• Implemented a performance prediction model by measuring
characteristics like MLP and ILP in a code section with
prediction accuracy of 88.5% on average

• Gem5 modifications:
– Created a new controller class to carry out prediction calculations

dynamically. This was invoked on every instruction commit in
commit_impl.hh

– New fields added to the base_dyn_inst class

– Tracker table implemented in commit_impl.hh in commitInsts()

– Counters were also added in inst_queue_impl, iew_impl,
cache_impl, lsq_unit_impl

• Total lines of code added: ~200

University of Michigan

Electrical Engineering and Computer Science
14

Questions?

