
1 1 

1 

Full-System Workloads and 

Asymmetric Multi-Core Simulation 

Anthony Gutierrez 

atgutier@umich.edu 

Advanced Computer Architecture Laboratory 

University of Michigan, Ann Arbor, MI 



2 2 

2 

University of Michigan 

Outline 

 Part I: Using Full-System Workloads 

 Available Full-System Workloads 

 Beyond SPEC CPU: Java Workloads 

 BBench: Example Interactive Workload 

 Interactive Workload Challenges and What We Need 

 Part II: Asymmetric Multi-Core Simulation 

 Modeling an Asymmetric Multi-Core Simulation 

 Thread Migration in gem5 

 What is Still Missing 



3 3 

3 

University of Michigan 

Full-System Workloads, What’s out There? (ARM) 

 gem5 can support workloads for Android/Linux out of the box 

 Models RealView/Versatile Express development boards 

 Have successfully run Android and Ubuntu 

 With gui support over VNC 

 Need to compile OS, kernel, and workloads for proper target 

 May also need to modify startup scripts and other file on image 

 Pre-compiled disk images and kernels exist as well 

 Linaro (Ubuntu) and BBench (Android) images 



4 4 

4 

University of Michigan 

Beyond SPEC CPU: Java Workloads 

 DaCapo Benchmarks 

 Real-world, open-source Java benchmarks 

 Need full-system simulation 

 Can’t really compile statically 

 Need Java VM and associated libraries 

 Appropriate OS: Ubuntu 

 Can utilize QEMU to install required packages quickly 

 

QEMU 

Disk Image (Ubuntu) 

Mount image 
Chroot image’s root dir 
apt-get install libs 
apt-get install JVM, etc. 



5 5 

5 

University of Michigan 

BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 



6 6 

6 

University of Michigan 

BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 

 Challenges 

 Can’t interact very easily – Ensure BBench is fully automated 



7 7 

7 

University of Michigan 

BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 

 Challenges 

 Can’t interact very easily – Ensure BBench is fully automated 

 Terminate when benchmark finishes – Tricky scripting to terminate run 



8 8 

8 

University of Michigan 

BBench: Web-Browser Benchmarking 

 Web-browser benchmark 

 Collection of several relevant pages scraped from the web in 2011 

 JavaScript automates the rendering of each page 

 Ported to gem5 on both Gingerbread and ICS 

 Challenges 

 Can’t interact very easily – Ensure BBench is fully automated 

 Terminate when benchmark finishes – Tricky scripting to terminate run 

 Prevent screen from locking – Modify Android FS source to prevent lock 



9 9 

9 

University of Michigan 

Challenges with Interactive Applications 

 Running interactive applications 

 How do we automate these apps? 

 How do me model interactivity? 

 What if the application relies on devices? 

 GPS, GPU, radio, etc. 

 E.g., BBench on gem5 spends majority of time in SW rendering – no 

GPU 

 Things I’d like to seem in gem5: 

 Support for more realistic devices 

 Care about interaction with devices, so functional modeling could be enough 

 A centralized location for available workloads 

CPU 
Caches 

Interconnect 

Black-Box 

GPU Model GL Calls 



10 10 

10 

University of Michigan 

Outline 

 Part I: Using Full-System Workloads 

 Available Full-System Workloads 

 Beyond SPEC CPU: Java Workloads 

 BBench: Example Interactive Workload 

 Interactive Workload Challenges and What We Need 

 Part II: Asymmetric Multi-Core Simulation 

 Modeling an Asymmetric Multi-Core Simulation 

 Thread Migration in gem5 

 What is Still Missing 



11 11 

11 

University of Michigan 

Modeling an Asymmetric Multi-Core System 

 gem5 supports several CPU models 

 Out-of-order, in-order, single-cycle timing, atomic 

 Generic interface between allows for multiple types at once 

 Out-of-order <-> in-order 

 Out-of-order <-> timing 

 In-order <-> timing 

 Atomic and timing models don’t mix well 

 Setup everything in Python config scripts 

Source: Greenhalgh, 2011. ARM white paper. 

ARM big.LITTLE Processing 



12 12 

12 

University of Michigan 

Two Ways to Model Asymmetric Cores 

 1) All cores are always active 

 Inside your config scripts define CPUs of multiple types: 

m5.drain(test_sys) # drains all objects 
m5.switchCpus(switch_cpu_list) # switches the CPUs & transfers state 
m5.resume(test_sys) # tell all objects to resume 

 2) Only cores of a certain type are active 

 Define multiple lists of CPUs and switch back-and-forth: 

test_sys.big_cpus = [DerivO3CPU(cpu_id=0), DerivO3CPU(cpu_id=1)] 
test_sys.big_cpus = [InOrderCPU(cpu_id=0), InOrderCPU(cpu_id=1)] 
switch_cpu_list = [(test_sys.big_cpu[i], test_sys.little_cpu[i]) for i in xrange(np)] 

 Then, on a switch event, use switching infrastructure: 

 Then, just run simulation as normal 

test_sys.cpus = [DerivO3CPU(cpu_id=0), InOrderCPU(cpu_id=1)] 



13 13 

13 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 1. drain() 

L2 Bus 



14 14 

14 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 

Needs to drain 

1. drain() 

L2 Bus 



15 15 

15 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 

Needs to drain 

1. drain() 

Drained 

L2 Bus 



16 16 

16 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 1. drain() 

Drained 

L2 Bus 

Signal Drained 



17 17 

17 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Switched Out Switched Out 1. drain() 
2. switchOut() 

L2 Bus 



18 18 

18 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Switched Out Switched Out 1. drain() 
2. switchOut() 
3. takeOverFrom() 

L2 Bus 

Transfer state 



19 19 

19 

University of Michigan 

Modeling Thread Migration 

 gem5’s built-in drain()/takeOverFrom()/switchOut()/resume() functionality 

CPU 1 CPU 2 

I$ D$ 

L2 

Running Switched Out 1. drain() 
2. switchOut() 
3. takeOverFrom() 
4. Resume() 

L2 Bus 



20 20 

20 

University of Michigan 

No Cache Swapping 

 More realistic migration modeling 

 Give each core their own L1 caches 

 In takeOverFrom(), don’t swap caches 

CPU 1 CPU 2 

I$ D$ 

L2 

L2 Bus 

I$ D$ 

L2 Bus 

Clean/Invalidate Cache during drain() 
 dCache.memWriteback(); 
 iCache.memWriteback(); 
 dCache.memInvalidate(); 
 iCache.memInvalidate(); 



21 21 

21 

University of Michigan 

What’s Missing? 

 Realistic timing of thread migration 

 Registers, caches, and all other thread context transferred (atomically) 

 InOrderCPU support for ARM, x86 

 Currently using scaled-down O3, or TimingSimpleCPU to model InOrder 

 Account for cache state transfer/cleaning overhead 

 Currently, caches are swapped between cores, or cleaned atomically 

 



22 22 

22 

University of Michigan 

Questions? 


