
Classic Memory System 
Revisited

Andreas Hansson
ARM Research

gem5 User Workshop 2015

Source: Wikipedia

What are we modeling?

Source: ARM

▪  DRAM controller refinements
▪  New DRAM features, power modeling

▪  Crossbar extensions
▪  Interleaving and hashing

▪  Snoop filter addition
▪  Steering snoops, tracking evictions

▪  Correctness checking
▪  Memory-model checker and soak tests

▪  Performance tuning
▪  Transaction support, cache latencies

Key changes and additions

What are we modeling?

Source: ARM

DRAM evolution

7/32

4th Generation of DDR SDRAM

Successor of DDR3 from 2014 supporting all Computing system

C:\>

PC66 -133 DDR DDR2 DDR3 DDR4

MDDR MDDR2 LPDDR3 LPDDR4

GDDR GDDR2 GDDR3 GDDR4 GDDR5

’02 ’14 ’07 ’05 ….

Source: Samsung

Same same…but different
LPDDR4 and WIO2 Overview

LPDDR3 & LPDDR3E LPDDR4 Wide IO2
Die Organization 1ch X 8 banks X 32 IO

2ch X 8banks X16 IO

4ch X 8banks X 64 IO

Channel # 1 2 4 & 8

Bank # 8 8 per channel (16 per die) 32 per die

Density 4Gb – 32Gb 4Gb – 32Gb 8Gb – 32Gb

Page Size 4KByte 2KByte 4KByte (4ch die), 2KB (8ch die)

Max BW per die 6.4GB/s,
8.5GB/s (overclocking)

12.8GB/s,
17GB/s (overclocking)

25.6GB/s & 51.2GB/s
34GB/s & 68GB/s(overclocking)

Max IO Speed 2133Mbps 4266Mbps 1066Mbps

Signal Pin # 62 per die 66 per die ~430 per die (4ch die), ~850 per die(8ch die)

Package POP, MCP POP, MCP KGD,

Source: Qualcomm

Top-down controller model

▪  Don’t model the actual DRAM, only the timing constraints
▪  DDR3/4, LPDDR2/3/4, WIO1/2, GDDR5, HBM, HMC, even PCM
▪  See src/mem/DRAMCtrl.py and src/mem/dram_ctrl.{hh, cc}

DRAM Memory Controller

S
ystem

 interfaces

write queue

read queue

P
age policy &

 arbitration

P
H

Y
 &

 tim
ing constraints

Device width
Burst length
#ranks, #banks
Page size

tRCD
tCL
tRP
tRAS
tBURST
tRFC & tRFEI
tWTR
tRRD
tFAW/tTAW
…

Hansson et al, Simulating DRAM controllers for future system architecture exploration, ISPASS’14

Controller model correlation

▪  Comparing with a real memory controller
▪  Synthetic traffic sweeping bytes per activate and number of banks
▪  See configs/dram/sweep.py and util/dram_sweep_plot.py

gem5 model Real memory controller

64

12
8 19

2 25
6

0

20

40

60

80

100

8 7 6 5 4 3 2
1

80-100

60-80

40-60

20-40

0-20

Number of Banks Bytes per
Activate 64

12
8 19

2 25
6

0

20

40

60

80

100

8 7 6 5 4 3 2
1

80-100

60-80

40-60

20-40

0-20

Number of Banks
Bytes per
Activate

▪  DRAM accounts for a large portion of system power
▪  Need to capture power states, and system impact

▪  Integrated model opens up for developing more clever strategies
▪  DRAMPower adapted and adopted for gem5 use-case

DRAM power modeling

•  Active Energy

•  Precharge Energy

•  Read/Write Energy

•  Background Energy

•  Refresh Energy
 0 5 1015202530354045505560657075808590

AndeBench

bbench

GPU-
AngryBirds

Energy Saving due to Power-Down (%)

Energy Saving due
to Power-Down (%)

64%

36%

Static Energy(mJ)

Dynamic Energy(mJ)

BBench DRAM Energy Analysis (LPDDR3 x32)

Naji et al, A High-Level DRAM Timing, Power and Area Exploration Tool, SAMOS’15

What are we modeling?

Source: ARM

▪  DRAM controller refinements
▪  New DRAM features, power modeling

▪  Crossbar extensions
▪  Interleaving and hashing

▪  Snoop filter addition
▪  Steering snoops, tracking evictions

▪  Correctness checking
▪  Memory-model checker and soak tests

▪  Performance tuning
▪  Transaction support, cache latencies

Key changes and additions

▪  Multi-channel memory support is essential
▪  Emerging DRAM standards are multi-channel by

nature (LPDDR4, WIO1/2, HBM1/2, HMC)

▪  Interleaving support added to address range
▪  Understood by memory controller and interconnect
▪  See src/base/addr_range.hh for matching and  

src/mem/xbar.{hh, cc} for actual usage
▪  Interleaving not visible in checkpoints

▪  XOR-based hashing to avoid imbalances
▪  Simple yet effective, and widely published
▪  See configs/common/MemConfig.py for system

configuration

Address interleaving

Source: Micron

▪  Hybrid Memory Cube (HMC) vaults
▪  32 channels of DRAM
▪  HMC DRAM configuration

▪  HMC base layer
▪  4 non-coherent crossbars
▪  HMC interleaving configuration

▪  HMC links
▪  Bridges or custom link classes
▪  Link interleaving on the host side

▪  …only using what is already part of gem5

With a bit of creativity…

16 Micron Confidential | ©2012 Micron Technology, Inc. |

HMC Near Memory

▶ All links between host CPU
and HMC logic layer

September 11, 2012

▶ Maximum bandwidth per GB capacity

� HPC/Server – CPU/GPU
� Graphics
� Networking systems
� Test equipment Source: Micron

What are we modeling?

Source: ARM

▪  DRAM controller refinements
▪  New DRAM features, power modeling

▪  Crossbar extensions
▪  Interleaving and hashing

▪  Snoop filter addition
▪  Tracking evictions, steering snoops

▪  Correctness checking
▪  Memory-model checker and soak tests

▪  Performance tuning
▪  Transaction support, cache latencies

Key changes and additions

▪  Broadcast-based coherence protocol
▪  Incurs performance and power cost
▪  Does not reflect realistic implementations

▪  Snoop filter goes one step towards directories
▪  Track sharers, based on writeback and clean eviction
▪  Direct snoops and benefit from locality

▪  Many possible implementations
▪  Currently ideal (infinite), no back invalidations
▪  Can be used with coherent crossbars on any level
▪  See src/mem/SnoopFilter.py and  

src/mem/snoop_filter.{hh, cc}*

Snoop (probe) filtering

Source: AMD * Clean eviction patches are still on reviewboard

▪  DRAM controller refinements
▪  New DRAM features, power modeling

▪  Crossbar extensions
▪  Interleaving and hashing

▪  Snoop filter addition
▪  Steering snoops, tracking evictions

▪  Correctness checking
▪  Memory-model checker and soak tests

▪  Performance tuning
▪  Transaction support, cache latencies

Key changes and additions

▪  Check adherence to consistency model
▪  Notion of functional reference memory is too simplistic
▪  Need to track valid values according to consistency 

model

▪  Memory checker and monitors
▪  Tracking in src/mem/MemChecker.py and  

src/mem/mem_checker.{hh, cc}
▪  Probing in src/mem/mem_checker_monitor.{hh, cc}

▪  Revamped testing
▪  Complex cache (tree) hierarchies in configs/examples/{memtest, memcheck}.py
▪  Randomly generated soak test in util/memtest-soak.py
▪  For any changes to the memory system, please use these

Memory system verification

L2

MemChecker

Core 1

Monitor

L1

XBar

Core 1

Monitor

L1

Core 1

Monitor

L1

▪  DRAM controller refinements
▪  New DRAM features, power modeling

▪  Crossbar extensions
▪  Interleaving and hashing

▪  Snoop filter addition
▪  Steering snoops, tracking evictions

▪  Correctness checking
▪  Memory-model checker and soak tests

▪  Performance tuning
▪  Transaction support, cache latencies

Key changes and additions

What are we modeling?

Source: ARM

▪  More control in device and cache interactions
▪  Aligned with AMBA terminology and SystemC TLM
▪  See src/mem/packet.{hh, cc}

▪  Extended set of supported transactions
▪  Whole line writes without need for read exclusive*
▪  Reads for non-dirty data and non-cacheable reads*
▪  Proper handling of uncacheable transactions
▪  See src/mem/cache/cache.{hh, cc}

A more complete picture

*Transaction support patches are still on reviewboard

▪  Cache and crossbar latencies refined
▪  Enable more representative behaviour with split into request/response/snoop flows
▪  Allow caches with longer and asymmetric read/write latencies
▪  See src/mem/cache/cache.{hh, cc} and src/mem/xbar.{hh, cc}

Performance tuning

0

20

40

60

80

100

120

140

160

180

200

0.016 0.032 0.064 0.128 0.256 0.512 1.024 2.048 4.096 8.192

La
te

nc
y

[n
se

c]

Memory Size [MB]

juno_lat_lmbench3-str512

juno_lat_lmbench3-t-str512

gem5hpc_lat_lmbench3-str512

gem5hpc_lat_lmbench3-str512

Where to next?

Source: ARM

▪  Slow
▪  No support for atomic, and a clear bottleneck in timing mode

▪  Unnecessarily complex
▪  Many times there is no need to explore coherency protocols

▪  Meta programming
▪  C++ as text, making development inconvenient

▪  Compatibility issues
▪  Need more flexibility in terms of address ranges, I/O devices, etc

What about Ruby?

Questions?

