
Cross-cutting Infrastructure for
Evaluating Managed Languages and

Future Architectures

Paul Gratz (Texas A&M University)

Tony Hosking (Purdue University)

Eliot Moss (University of Massachusetts Amherst)

“... designing the architectures of the
future, on the machines of today,

with the applications of yesterday ...”

– Prof. Mark D. Hill (?)

The University of Wisconsin-Madison

The Problem

Old World

• Architectural advances “lift all boats” for general
software
– Frequency increases
– ILP extraction

• Software exploited performance gains
– Higher levels of abstraction
– Increased programmer productivity
– Larger data sets

• Little interaction required between Architecture
and Software development

Hardware/Software in a Virtuous Cycle

Two New Worlds

• Architecture Trends
– Power wall

– Power-performance
trade-offs

– Less focus on
• Clock frequency
• ILP

– Chip Multi-processors

– Heterogeneous designs

– Application specific
accelerators

• Language Trends
– Java/managed

languages

– Thread-level Parallelism

– Even greater
abstraction for
productivity

– Dynamic compilation

– Type and memory
safety

– Garbage collection

– Ever larger data sets

Two New Worlds

• Architecture Trends

– Compiled language benchmarks
dominate

• Hotspot won't even execute
in gem5 x86

– Simulation time for large data
sets prohibitive

– Exploiting CMP scaling requires
applications with extreme TLP

– Exploiting heterogeneous and
accelerator hardware requires
language support

• Language Trends

– Assumption of generational
performance increases

– Recent focus on TLP, however,
not on par with future core
counts

– Assumption of homogeneity

– Little emphasis on real
hardware implications

• Little/no support for
heterogeneous HW

• Accelerator HW

The virtuous cycle is broken

– Cross-cutting efforts essential to future progress
(but few to be seen)

Project Goal

Restart a virtuous hardware-software
cycle

• Facilitate cross-cutting research
– Unify architecture and language

research infrastructures
– Develop benchmark suite which

exercises new language features
– Use hardware transactional memory as

a cross-cutting exemplar

Outline

• Introduction/Motivation
• Infrastructure Overview
• Component Efforts

– gem5 Simulation Toolkit
– Jikes RVM
– DaCapo Benchmark Framework

• Project Administration
• Feedback

Infrastructure for Cross-
cutting Research

• Enhancement and maturation of three existing
infrastructure projects:
– gem5: Architecture simulation
– Jikes RVM: Research Java VM
– Dacapo: Benchmark suite and framework

• Integration to enable cross-cutting research
– Ensure/enhance interoperability
– Build coherent interfaces for extension/integration
– Hardware transactional memory as a testcase/exemplar

Overview

gem5 Effort

• General Maturation/Enhancement
– Simulation runtime for large applications

• Parallel execution of rigorous statistical sampling
– SMARTS[Wunderlich et al] w/ samples executed in parallel
– Cache warming in fast-forward

• QEMU and/or HW virtualization-based fast-
forwarding

– Processor model performance validation
– Support for language virtual machines in X86

gem5 Effort (cont.)

• Support for cross-cutting research
– Hardware transactional memory

• Reference model implementations
• Testcase for cross-cutting infrastructure
• Build framework for ISA extension experiments

– Heterogeneous architectures
• Different processor classes in one CMP
• Accelerators

– Performance counters
• Software visible and extensible
• Interface to feedback simulation information to the

runtime environment

Jikes RVM Effort

• Update and enhance
– Compiler refurbishment
– Migration to Open JDK libraries
– Dynamic and parallel language support
– Parallel memory management (GC)

• Support for cross-cutting research
– Transactional memory support
– Performance counters through PAPI
– Heterogeneous hardware support

DaCapo Effort

• The DaCapo benchmark suite
– 2015 release
– Contemporary and emerging workloads
– Ports to new parallel languages

• X10, Fortress

– Support for transactional memory

• Framework analysis tools
– Workload characterization
– Analysis of parallel applications
– Hooks to extensible performance counter

interface

Project Administration

• Integrate efforts with existing project
support structures
– Web, email list, bug tracking

• Launch cross-cutting research
infrastructure support resources
– Email list and website/wiki

• Yearly tutorial/workshop at ASPLOS

Feedback

• Comments and suggestions?
• Interested in participating?
• Contact me:

– Paul V. Gratz
– pgratz@tamu.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

